Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý: Các biểu thức mũ chẵn đều không âm.
\(a^{2n}+b^{2n}\le0\Leftrightarrow a^{2n}+b^{2n}=0\Leftrightarrow a=b=0\)
a,\(\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\)< \(0\)
Vì \(\left(x-\frac{2}{5}\right)^{2010}\);\(\left(y+\frac{3}{7}\right)^{468}\)đều > \(0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0\)
\(\left(y+\frac{3}{7}\right)^{468}=0\)
=> \(\left(x-\frac{2}{5}\right)^{2010}=0^{2010}\)
\(\left(y+\frac{3}{7}\right)^{468}=0^{468}\)
=> \(x-\frac{2}{5}=0\)
\(y-\frac{3}{7}=0\)
=> \(x=\frac{2}{5}\)
\(y=\frac{3}{7}\)
Vậy \(x=\frac{2}{5}\)\(y=\frac{3}{7}\)
1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)
\(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)
( . là nhân nha)
\(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)
\(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)
\(x=\frac{113}{8}\)
( \(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{49}{81}=\frac{56}{81}\)
\(4y=\frac{7}{81}\)
y = 7/81:4
y = 7/324
( 7.3 + 8.13) : ( 9/2/3 - y) = 39
( 21 + 104) : ( 29/3 - y) = 39
125 : ( 29/3-y) = 39
29/3-y = 125 - 39
29/3-y = 86
y = 29/3 -86
y = -229/3
\(\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times....\times\left(1+\frac{1}{98}\right)\times\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times....\times\frac{99}{98}\times\frac{100}{99}\)
\(=\frac{3\times4\times5\times...\times99\times100}{2\times3\times4\times....\times98\times99}\)
\(=\frac{100}{2}=50\)
(1+1/2).(1+1/3).(1+1/4)....(1+1/98).(1+1/99)
=3/2.4/3.5/4...99/98.100/99
=3.4.5....99.100/2.3.4....98.99
=100/2
=50
c) (x+1) + (x+2) + ... + (x+5) = 90
=> 5x + ( 1 + 2 + ... + 5 ) = 90
5x + 15 = 90
5x = 90 - 15
5x = 75
x = 75 : 5
x = 15
d) (x+1) + (x+2) + .... + (x+100) = 20150
=> 100x + ( 1+2+...+100 ) = 20150
100x + 5050 = 20150
100x = 20150 - 5050
100x = 15100
x = 15100 : 100
x = 151
Ta có : (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 90
<=> x + x + x+ x + x + (1 + 2 + 3 + 4 + 5) = 90
<=> 5x + 15 = 90
=> 5x = 75
=> x = 15
b, (y+1) + (y+2) + (y+3) + .... + (y+99) = 6138
(y+y+y+y+....+y) + (1+2+3+...+99) = 6138
99.y + 4950 = 6138
99.y = 6138 - 4950
99.y = 1188
y = 1188 : 99
x = 12
a) \(\left(y+1\right)+\left(y+4\right)+\left(y+7\right)+....+\left(y+28\right)=155155\)
\(\Rightarrow\left(y+y+...+y\right)+\left(1+4+7+...+28\right)=155155\)
\(\Rightarrow10x+145=155155\)
\(\Rightarrow10x=155010\)
\(\Rightarrow x=15501\)
Vậy x = 15501
b) \(\left(y+1\right)+\left(y+2\right)+..+\left(y+99\right)=6138\)
\(\Rightarrow\left(y+y+...+y\right)+\left(1+2+3+...+99\right)=6138\)
\(\Rightarrow99x+4950=6138\)
\(\Rightarrow99x=1188\)
\(\Rightarrow x=12\)
Vậy x = 12