Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
1. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
b, \(\frac{\sqrt{3}}{2+\sqrt{3}}-\frac{\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\sqrt{3}\left(2-\sqrt{3}\right)-\sqrt{3}\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{2\sqrt{3}-3-2\sqrt{3}-3}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{-6}{4-3}\)=-6
c,\(\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\)=\(\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)=\(\frac{2\sqrt{5}+4-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)=\(\frac{8}{1}\)=8
tích hộ mình nha
đề là \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)đúng ko bạn
\(\left(\sqrt{2}+1-\sqrt{2}+1\right)\left[\left(\sqrt{2}+1\right)^2+\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\left(\sqrt{2}-1\right)^2\right]\)
\(=2\left(2+1+2\sqrt{2}+\sqrt{2-1}+2-2\sqrt{2}+1\right)\)
\(=2\left(3+\sqrt{1}+3\right)\)
\(=2\left(6+1\right)\)
\(=14\)
\(b,\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3}+1}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}+\frac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}\)
\(=\frac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-6\right)\left(3+\sqrt{3}\right)}{9-3}\)
\(=\frac{6\sqrt{2}+3\sqrt{6}-2\sqrt{6}-3\sqrt{2}+6\sqrt{2}-3\sqrt{6}+2\sqrt{6}-3\sqrt{2}}{6}\)
\(=\frac{6\sqrt{2}}{6}=\sqrt{2}\)