K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)

\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\frac{2x}{5\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)

\(\frac{10}{x+1}\)

31 tháng 10 2019

a) \(P=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\frac{1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{x+1}{\left(x-1\right)\left(2x+1\right)}\)

31 tháng 10 2019

b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{5x-5x}{2x\left(x+5\right)}\)

\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+5x\right)}{2x\left(x+5\right)}\)

\(=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

\(=\frac{x-1}{2}\)

30 tháng 4 2018

ĐKXĐ\(\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

P=\(11-x\)

26 tháng 3 2020

ĐKXĐ: \(x\ne\pm1;x\ne0\)

a, \(A=\left(\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right):\frac{2x}{5\left(x-1\right)}\)

\(\frac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{5\left(x-1\right)}{2x}\)

\(\frac{20x\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

\(\frac{10}{x+1}\)

Vậy ......

b, Thay x=3 vào A

A= \(\frac{10}{4}=\frac{5}{2}\)

Vì x khác -1 nên ko cần tính TH này

c, Cho A = 2

=> \(\frac{10}{x+1}=2\)

=> \(2x+2=10\)

=> x= 4

vậy ......

hok tốt

19 tháng 7 2016

\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)

\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)

 

19 tháng 7 2016

\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )

\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

27 tháng 1 2019

ĐKXĐ : \(\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

a) \(A=\left(\frac{x+2}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)

\(\Leftrightarrow A=\left[\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{5\left(x-1\right)}{2x}\)

\(\Leftrightarrow A=\frac{x^2+3x+2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{5\left(x-1\right)}{2x}\)

\(\Leftrightarrow A=\frac{x^2+3x+2-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{5\left(x-1\right)}{2x}\)

\(\Leftrightarrow A=\frac{5\left(5x-1\right)\left(x-1\right)}{2x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{5\left(5x-1\right)}{2x\left(x+1\right)}\)

b) Xét x = -1 không thỏa mãn ĐKXĐ nên ta xét x = 3

Thay x = 3 vào A ta có :

\(A=\frac{5\left(5\cdot3-1\right)}{2\cdot3\cdot\left(3+1\right)}=\frac{35}{12}\)

c) Để A = 2 thì :

\(\frac{5\left(5x-1\right)}{2x\left(x+1\right)}=2\)

\(\Leftrightarrow4x\left(x+1\right)=5\left(5x-1\right)\)

\(\Leftrightarrow4x^2+4x=25x-5\)

\(\Leftrightarrow4x^2+4x-25x+5=0\)

\(\Leftrightarrow4x^2-21x+5=0\)

\(\Leftrightarrow4x^2-20x-x+5=0\)

\(\Leftrightarrow4x\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{4}\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy....