K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

*Công thức: Biến đổi x theo y và ngc lại và dùng các quy tắc.

a)\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\left(1\right)\end{matrix}\right.\)

Cộng 2 pt ta đc: x=1

Thay vào (1):\(\Leftrightarrow y=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)

Vậy (x;y)\(=\left(1;\frac{\sqrt{6}}{3}\right)\)

Những câu sau làm ttự.

#Walker

24 tháng 3 2020

ủa nhưng khi thay x,y vào phương trình đầu tiên thì kết quả không bằng 1 ?limdim

27 tháng 2 2022

a, (3 ; -3)

27 tháng 2 2022

a, Với y >= 0 

hpt có dạng \(\left\{{}\begin{matrix}2x+y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=9\\y=x-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)(ktmđk)

Với y < 0 hpt có dạng 

\(\left\{{}\begin{matrix}2x-y=3\\x-y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-3-6=-9\end{matrix}\right.\)(tm) 

b, bạn tự làm 

c, đk : x>= 3 

\(\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\\sqrt{x+3}-3\left|y-2\right|=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x+3}+\left|y-2\right|=2\\2\sqrt{x+3}-6\left|y-2\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7\left|y-2\right|=1\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y-2=\dfrac{1}{7}\\y-2=-\dfrac{1}{7}\end{matrix}\right.\\2\sqrt{x+3}+\left|y-2\right|=2\end{matrix}\right.\)

bạn tự giải nốt nhé 

1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

29 tháng 4 2023

4. Đk: \(x,y\ge0\)

\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)

29 tháng 12 2021

d: \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=4\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

24 tháng 2 2020

1/ \(\left\{{}\begin{matrix}x\sqrt{2}-y\sqrt{3}=1\\x+y\sqrt{3}=\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(\sqrt{2}+1\right)=1+\sqrt{2}\\x+y\sqrt{3}=\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{\sqrt{2}-1}{\sqrt{3}}\end{matrix}\right.\)

vậy hệ phương trình có ngiệm (x;y)=(1;\(\frac{\sqrt{2}-1}{\sqrt{3}}\))

2/ \(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y=-1\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-1}{2}\\x=\frac{3+\sqrt{2}}{2}\end{matrix}\right.\)

vậy hệ phương trình có nghiệm (x;y)=\(\left(\frac{3+\sqrt{2}}{2};\frac{-1}{2}\right)\)

3 tháng 4 2017

a)

Từ phương trình (2) ⇔ x = √2 - y√3 (3)

Thế (3) vào (1): ( √2 - y√3)√2 - y√3 = 1

⇔ √3y(√2 + 1) = 1 ⇔ y = =

Từ đó x = √2 - . √3 = 1.

Vậy có nghiệm (x; y) = (1; )

b)

Từ phương trình (2) ⇔ y = 1 - √10 - x√2 (3)

Thế (3) vào (1): x - 2√2(1 - √10 - x√2) = √5

⇔ 5x = 2√2 - 3√5 ⇔ x =

Từ đó y = 1 - √10 - . √2 =

Vậy hệ có nghiệm (x; y) = ;

c)

Từ phương trình (2) ⇔ x = 1 - (√2 + 1)y (3)

Thế (3) vào (1): (√2 - 1)[1 - (√2 + 1)y] - y = √2 ⇔ -2y = 1 ⇔ y = -

Từ đó x = 1 - (√2 + 1)(-) =

Vậy hệ có nghiệm (x; y) = (; -)


20 tháng 6 2019

\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)

\(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

20 tháng 6 2019

\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)

Làm nốt nha