Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)
⇒\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
⇒\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)
hay x=5
Vậy: x=5
b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)
⇔\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)
⇔\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)
hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)
⇔\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)
Vậy: \(x=\frac{29}{10}\)
c) \(10\cdot3^{x+2}-3^x=89\)
\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)
\(\Leftrightarrow3^x\left(90-1\right)=89\)
\(\Leftrightarrow3^x=1\)
hay x=0
Vậy: x=0
d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)
⇒\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)
\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)
\(\Leftrightarrow2x-\frac{19}{27}=0\)
\(\Leftrightarrow2x=\frac{19}{27}\)
hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)
Vậy: \(x=\frac{19}{54}\)
e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)
\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)
a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)
\(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)
\(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)
\(\frac{2}{5}-x=-3\)
\(x=\frac{2}{5}-\left(-3\right)\)
\(x=\frac{2}{5}+3\)
\(x=\frac{3}{5}-\frac{15}{5}\)
\(x=-\frac{12}{5}\)
Vay \(x=-\frac{12}{5}\)
b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)
\(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)
\(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)
\(-3+\frac{3}{x}=\frac{-25}{12}\)
\(\frac{3}{x}=\frac{-25}{12}+3\)
\(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)
\(\frac{3}{x}=\frac{5}{6}\)
\(\frac{18}{6x}=\frac{5x}{6x}\)
Đèn dây , bạn tự làm tiếp nhé , de rồi chứ
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a) \(\left|\frac{1}{3}x-8\right|+3=15\)
\(\Leftrightarrow\left|\frac{1}{3}x-8\right|=12\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x-8=-12\\\frac{1}{3}x-8=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x=-4\\\frac{1}{3}x=20\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=60\end{cases}}\)
Vậy \(x\in\left\{-12;60\right\}\)
b) \(15-\left|2+3x\right|=8\)
\(\Leftrightarrow\left|2+3x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=-7\\2+3x=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-9\\3x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{3}\end{cases}}\)
Vậy \(x\in\left\{-3;\frac{5}{3}\right\}\)
d) \(-1\frac{1}{6}-\left|5-3x\right|=\frac{2}{3}\)
\(\Leftrightarrow\frac{-7}{6}-\left|5-3x\right|=\frac{2}{3}\)
\(\Leftrightarrow\left|5-3x\right|=\frac{-7}{6}-\frac{2}{3}\)
\(\Leftrightarrow\left|5-3x\right|=\frac{-11}{6}\)
Vì \(\left|5-3x\right|\ge0\forall x\)
mà \(\frac{-11}{6}< 0\)\(\Rightarrow\)Vô lý
Vậy \(x\in\varnothing\)
e) \(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{20}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{2.6}\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^8\)
g) \(4.2^5:\left(2^3.1^{16}\right)=2^2.2^5:2^3=2^4=16\)
a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)
Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)
b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)= \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)
=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=> \(\frac{27x}{4}=\frac{27}{40}\)
\(27x.40=27.4\)
\(1080.x=108\)
\(x=\frac{1}{10}\)
Vậy \(x=\frac{1}{10}\)
c) \(\left|x-1\right|+4=6\)
\(\left|x-1\right|=6-4\)
\(\left|x-1\right|=2\)
\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy \(x=\left[3,-1\right]\)
d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)
e) \(\left(x^2-3\right)^2=16\)
\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)
\(x^2=7=>x=\sqrt{7}\)
Vậy \(x=\sqrt{7}\)
f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\)
\(\frac{2}{5}x=-\frac{4}{15}\)
\(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)
Vậy \(x=-\frac{2}{3}\)
g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)
\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)
Vậy \(x=-3\)
k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)
\(\frac{2}{5}x=\frac{4}{15}\)
\(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)
Vậy \(x=\frac{2}{15}\)
I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)
\(\frac{3}{5}x=\frac{5}{14}\)
\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)
Vậy \(x=\frac{25}{42}\)
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
a, \(\left(2x-1\right)=-8\)
\(2x=-8+1\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
a) (2x - 1) = -8
⇒ 2x = -8 + 1
⇒ 2x = -7
b) (3x - 2)\(^2\) = \(\frac{1}{49}\)
Ta có: \(\frac{1}{49}\) = \(\frac{1}{7}\). \(\frac{1}{7}\) hoặc \(\frac{1}{49}\) = \(\frac{-1}{7}\). \(\frac{-1}{7}\)
TH1: 3x - 2 = \(\frac{1}{7}\) TH2: 3x - 2 = \(\frac{-1}{7}\)
⇒ 3x = \(\frac{1}{7}\)+2 ⇒ 3x = \(\frac{-1}{7}\)+2
⇒ 3x = \(\frac{15}{7}\) ⇒ 3x = \(\frac{13}{7}\)
⇒ x = \(\frac{5}{7}\) ⇒ x = \(\frac{13}{21}\)
Vậy: x = \(\frac{5}{7}\) hoặc x = \(\frac{13}{21}\)