Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(A=\left|2x-1\right|+\left|2x-3\right|\)
\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)
\(A\ge2\)
\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou
\(7:a,\sqrt{2-x}=3\)
\(\left|2-x\right|=3^2=9\)
\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)
\(b,\sqrt{4-4x+x^2}=3\)
\(\sqrt{\left(2-x\right)^2}=3\)
\(\left|2-x\right|=3\)
\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)
\(c,\sqrt{4+x^2}+x=3\)
\(\sqrt{4+x^2}=3-x\)
\(4+x^2=\left(3-x\right)^2\)
\(4+x^2=9-6x+x^2\)
\(x=\frac{5}{6}\left(TM\right)\)
\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)
\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)
\(\sqrt{x-2}\left(2-4+3\right)=5\)
\(\sqrt{x-2}=5\)
\(\left|x-2\right|=25\)
\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)
14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)
\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)
\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)
SUy ra 2 trường hợp => từ 1 và 2 suy ra gì gì đó........
CHúc bạn hok tốt ;-;
Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:
\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)
Còn nếu từ số một suy ra số 2 thì :
\(2-2+1\)
\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)
\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)
\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)
\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)
\(=2-0+0\)
\(=2\)
45) \(\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)
47) \(\sqrt{8+2\sqrt{15}}=\sqrt{3+2\sqrt{15}+5}=\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}+\sqrt{3}\)
48) \(\sqrt{23+4\sqrt{15}}=\sqrt{3+4\sqrt{15}+20}=\sqrt{\left(\sqrt{3}+2\sqrt{5}\right)^2}=\sqrt{3}+2\sqrt{5}\)
49) \(\sqrt{11+4\sqrt{6}}=\sqrt{3+4\sqrt{6}+8}=\sqrt{\left(\sqrt{3}+2\sqrt{2}\right)^2}=\sqrt{3}+2\sqrt{2}\)
50) \(\sqrt{14-6\sqrt{5}}=\sqrt{9-6\sqrt{5}+5}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
51) \(\sqrt{22-8\sqrt{6}}=\sqrt{16-8\sqrt{6}+6}=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)
52) \(\sqrt{16-6\sqrt{7}}=\sqrt{9-6\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)
53) \(\sqrt{9-4\sqrt{2}}=\sqrt{8-4\sqrt{2}+1}=\sqrt{\left(2\sqrt{2}-1\right)^2}=2\sqrt{2}-1\)
54) \(\sqrt{13-4\sqrt{3}}=\sqrt{12-4\sqrt{3}+1}=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
55) \(\sqrt{7-4\sqrt{3}}=\sqrt{4-4\sqrt{3}+3}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
56) \(\sqrt{21-8\sqrt{5}}=\sqrt{16-8\sqrt{5}+5}=\sqrt{\left(4-\sqrt{5}\right)^2}=4-\sqrt{5}\)
57) \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{1}{4}-\sqrt{2}+2}=\sqrt{\left(\frac{1}{2}-\sqrt{2}\right)^2}=\sqrt{2}-\frac{1}{2}\)
58) \(\sqrt{\frac{129}{16}+\sqrt{2}}=\sqrt{8+\sqrt{2}+\frac{1}{16}}=\sqrt{\left(2\sqrt{2}+\frac{1}{4}\right)^2}=2\sqrt{2}+\frac{1}{4}\)
59) \(\sqrt{3+\sqrt{8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
60) \(\sqrt{2}\sqrt{8+3\sqrt{7}}=\sqrt{16+6\sqrt{7}}=\sqrt{9+6\sqrt{7}+7}=\sqrt{\left(3+\sqrt{7}^2\right)}=3+\sqrt{7}\)