Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left(y-3\right)^2\ge0\end{cases}\forall x,y\Rightarrow\left|x+1\right|+\left(y-3\right)^2\ge0\forall x,y}\)
\(\Rightarrow N=\left|x+1\right|+\left(y-3\right)^2+10\ge10\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x+1\right|=0\\\left(y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}}\)
Vậy MinN = 10 khi x=-1,y=3
Ta có :
\(A\left(x\right)=-5m^2x+10\)
\(\Rightarrow A\left(1\right)=-5m^2+10\)
Mà \(A\left(1\right)=5\)
\(\Rightarrow-5m^2+10=5\)
\(\Rightarrow-5m^2=5-10\)
\(\Rightarrow-5m^2=-5\)
\(\Rightarrow m^2=1\)
\(\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
Vậy \(\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
Chúc bạn học tốt !!!
Ta có \(A(1)=5\)\(\Rightarrow\)\(-5m^2+10=5\)
\(-5m^2=5-10\)
\(-5m^2=-5\)
\(m^2=\frac{-5}{-5}\)
\(m^2=1\)
\(\Rightarrow m=1\)hoặc \(m=-1\)
Vậy m=1 hoặc m=-1
Ta có các TH:
+/ x-1\(\ge\)0 => x\(\ge\)1=> Ix-1I=x-1 và I1-xI=x-1
Phương trình tương đương: 2016(x-1)+(x-1)2=2015(x-1)
<=> (x-1)+(x-1)2=0 <=> (x-1)(1+x-1)=0
<=> x(x-1)=0 => x=0 (Loại) và x=1 (Chọn)
+/ x-1< 0 => x<1=> Ix-1I=1-x và I1-xI=1-x
Phương trình tương đương: 2016(1-x)+(x-1)2=2015(1-x)
<=> (1-x)+(x-1)2=0 <=> (x-1)(-1+x-1)=0
<=> (x-1)(x-2)=0 => x=1 (Loại) và x=2 (Loại) vì x<1
ĐS: x=1
Suy ra 2016 . |x-1| - 2015. |1-x| + ( x-1 )^2 =0 ( chuyển vế)
suy ra |x-1| (2016-2015) + (x-1)^2 =0 ( đổi |1-x| thành |x-1| rồi phân phối)
suy ra |x-1| . 1 + (x-1)^2 =0
Suy ra |x-1| + (x-1)^2 =0
Vì | x-1| >=0, mọi x
(x-1)^2 >=0, mọi x
suy ra |x-1| + (x-1)^2 >= 0, mọi x
dấu ' = ' xảy ra <=> (x-1) =0 hoặc (x-1)^2 =0
Tính ra thì cả 2 kết quả đều ra x=1
vậy x=1
Ko tránh khỏi thiếu sót, nếu sai ai đo sửa lại nhé. thắc mắc gì thì cứ hỏi
_Hết_
Bài 1
Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)
Khi đó:
\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)
Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)
Bài 2:
\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)
\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)
\(=-n^3+4n^2\)
\(=n^2\left(4-n\right)\)
Lập luận với n chẵn thì cái trên luôn chia hết cho 8
1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2
<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2
<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2
<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)
2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))
Thế vào ta được :
A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10
A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10
A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10
A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8
=> A chia hết cho 8 với mọi n chẵn ( đpcm )