Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>
Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)
đặt \(x^2+10x+21=a\)
ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)
ta có a(a-2) chia hết cho a hay x^2+10x+21
số dư là 1993
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)
a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]
b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2
c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
(8 - 5x).(x + 2) + 4.(x - 2)(x - 1) + 2.(x - 2)(x + 2) + 10
= (8x + 16 - 5x2 - 10x) + 4.(x2 - 3x + 2) + 2.(x2 - 4) + 10
= 8x + 16 - 5x2 - 10x + 4x2 - 12x + 8 + 2x2 - 8 + 10
= (8x - 10x - 12x) + (-5x2 + 4x2 + 2x2) + (16 + 8 - 8 + 10)
= -14x + x2 + 26
Tú mà không làm được câu này á :))
( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8
= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8
= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)
Đặt t = x2 - 15x + 54
(*) <=> t( t + 2 ) - 8
= t2 + 2t - 8
= ( t - 2 )( t + 4 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 )
=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )
Đặt y = x2 - 15x + 100
Ta có được phép chia ( y - 48 )( y - 42 ) : y
= y2 - 90y + 2016 : y
= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )
Đến đây thì quá dễ rồi :)) dư 2016 nhá
Đề này học kì 1 huyện tớ có.