\(\left(O\right)\)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

câu a thì dễ còn b hơi khó

 

10 tháng 3 2022

a) có CNF + NFD=90

MBC+EFD=90

=> MBC+EFD=90 

=>MBC=MNC

=> TG BNMC nội tiếp (đpcm)

 

1 tháng 3 2018

a) Giả sử AB < AC.  (Các trường hợp khác chứng minh tương tự)

Ta có tam giác CEF cân tại C nên \(\widehat{CEF}=\frac{180^o-\widehat{C}}{2}\)

\(\Rightarrow\widehat{MEB}=\frac{180^o-\widehat{C}}{2}\)

Ta có \(\widehat{MIB}=\widehat{IAB}+\widehat{IBA}=\frac{\widehat{A}+\widehat{B}}{2}=\frac{180^o-\widehat{C}}{2}\)

Hay \(\widehat{MEB}=\widehat{MIB}\). Suy ra tứ giác EMBI là tứ giác nội tiếp.

\(\widehat{IMB}=\widehat{IEB}=90^o\Rightarrow MB\perp AI.\)

b) Chứng minh tương tự \(\widehat{ANI}=90^o\Rightarrow\) tứ giác ANMB nội tiếp đường tròn đường kính AB cố định.

Mà \(\widehat{MBN}=90^o-\widehat{MIB}=\frac{\widehat{ACB}}{2}=\frac{\alpha}{2}=const\)

Do MN là dây cung chắn một góc không đổi trên đường tròn đường kính AB nên độ dài MN không đổi.

c) Gọi O là trung điểm AB thì \(\widehat{MON}=2.\widehat{MBN}=\alpha\)  

Do tứ giác IMBD nội tiếp nên \(\widehat{IDM}=\widehat{IBM}=\frac{\alpha}{2}\)

Tương tự : \(\widehat{IDN}=\frac{\alpha}{2}\)

Do đó \(\widehat{MDN}=\alpha=\widehat{NOM}\)

Suy ra tứ giác MNDO nội tiếp hay O thuộc đường tròn ngoại tiếp tam giác DMN.

Do đó đường tròn ngoại tiếp tam giác DMN luôn đi qua điểm O cố định khi C thay đổi.

30 tháng 6 2020

Để t nghĩ một lúc đã

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0