Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5:
a: Xét ΔCBA vuông tại A và ΔCAH vuông tại H có
góc C chung
=>ΔCBA đồng dạg với ΔCAH
=>CB/CA=CA/CH
=>CA^2=CB*CH
b: HB=6^2/8=4,5cm
=>BC=8+4,5=12,5cm
Xét ΔHAC có HK là phân giác
nên AK/HA=CK/CH
=>AK/3=CK/4=(AK+CK)/(3+7)=10/7
=>AK=30/7cm; CK=40/7cm
Bài 1:
Ta có:
\(A=9x^4-15x^3-6x^2+5=3x^2\left(3x^2-5x\right)-6x^2+5=3x^2.2-6x^2+5=6x^2-6x^2+5=5\)
Vậy, \(A=5\)
Bài 2: Ta có:
\(3^{15}+3^{16}+3^{17}=3^{15}+3^{15}.3+3^{15}.3^2=3^{15}.\left(1+3+3^2\right)=3^{15}.13\)
\(\Rightarrow3^{15}.13\) chia hết cho \(13\)
Do đó: \(3^{15}+3^{16}+3^{17}\) chia hết cho \(13\)
Ta có \(x.\left(x^2+x+1\right)-x^2.\left(1+x\right)-x-7\)
\(=x^3+x^2+x-x^2-x^3-x-7\)
\(=\left(x^3-x^3\right)-\left(x^2-x^2\right)-\left(x-x\right)-7\)
\(=-7\)
Do đó giá trị của biểu thức không phụ thuộc vào biến
Vậy...