Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét ΔIAB có
\(\widehat{AIB}+\widehat{IAB}+\widehat{IBA}=180^0\)
\(\Leftrightarrow\widehat{IAB}+\widehat{IBA}=115^0\)
hay \(\widehat{DAB}+\widehat{ABC}=230^0\)
Xét tứ giác ABCD có
\(\widehat{D}+\widehat{C}+\widehat{DAB}+\widehat{CBA}=360^0\)
\(\Leftrightarrow\widehat{D}+\widehat{C}=150^0\)
mà \(\widehat{C}-\widehat{D}=10^0\)
nên \(2\cdot\widehat{C}=160^0\)
\(\Leftrightarrow\widehat{C}=80^0\)
\(\Leftrightarrow\widehat{D}=70^0\)
3x2-75=0
<=> 3x2=75
<=> x2=25
<=> x=5
2x2-98=0
<=> 2x2=98
<=> x2=49
<=> x=7
x2-7x=0
<=> x(x-7)=0
<=> x=0 hoặc x=7
-3x2+5x=0
x(-3x+5)=0
x=0 hoặc -3x+5=0
x=0 hoặc -3x=-5
x=0 hoặc x=5/3
x2+4x+4=0
(x+2)2=0
x+2=0
x=-2
1. 3x2 - 75 = 0
<=> 3x2 = 75
<=> x2 = 25
<=> x = \(\sqrt{25}\)
<=> x = 5
2. x2 - 7x = 0
<=> x(x - 7) = 0
<=> \(\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
3. x2 - 14x + 13 = 0
<=> x2 - 13x - x + 13 = 0
<=> x(x - 13) - (x - 13) = 0
<=> (x - 1)(x - 13) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=13\end{matrix}\right.\)
4. 2x2 - 98 = 0
<=> 2x2 = 98
<=> x2 = 49
<=> x = \(\sqrt{49}\)
<=> x = 7
5. -3x2 + 5x = 0
<=> x(-3x + 5) = 0
<=> \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
6. x2 - 2x - 80 = 0
<=> x2 + 8x - 10x - 80 = 0
<=> x(x + 8) - 10(x + 8) = 0
<=> (x - 10)(x + 8) = 0
<=> \(\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
7. x2 = 81
<=> x2 - 92 = 0
<=> (x - 9)(x + 9) = 0
<=> \(\left[{}\begin{matrix}x-9=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
8. x2 + 4x + 4 = 0
<=> x2 + 2.x.2 + 22 = 0
<=> (x + 2)2 = 0
<=> 0 = 02 - (x + 2)2
<=> (0 + x + 2)(0 - x + 2) = 0
<=> (x + 2)(-x + 2) = 0
<=> \(\left[{}\begin{matrix}x+2=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
9. 4x2 + 12x + 5 = 0
<=> 4x2 + 2x + 10x + 5 = 0
<=> 2x(2x + 1) + 5(2x + 1) = 0
<=> (2x + 5)(2x + 1) = 0
<=> \(\left[{}\begin{matrix}2x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
1: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-3x^2+27x-27-x^3+27+9x^2+18x+9=15\)
\(\Leftrightarrow45x=6\)
hay \(x=\dfrac{2}{15}\)
2: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x=11\)
hay \(x=-\dfrac{11}{25}\)
3: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)
\(\Leftrightarrow x^3+64-x^3+25x=264\)
\(\Leftrightarrow25x=200\)
hay x=8
4: Ta có: \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)
\(\Leftrightarrow12x=84\)
hay x=7
6: Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=64\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=64\)
\(\Leftrightarrow12x^2=48\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
7: Ta có: \(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)
\(\Leftrightarrow-10x=-10\)
hay x=1
8: Ta có: \(\left(4x+1\right)^2-\left(2x+3\right)^2+5\left(x+2\right)^2+3\left(x-2\right)\left(x+2\right)=500\)
\(\Leftrightarrow16x^2+8x+1-4x^2-12x-9+5x^2+20x+20+3x^2-12=500\)
\(\Leftrightarrow20x^2+16x-500=0\)
\(\text{Δ}=16^2-4\cdot20\cdot\left(-500\right)=40256\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-8\sqrt{629}}{40}=\dfrac{-2-\sqrt{629}}{5}\\x_2=\dfrac{-16+8\sqrt{629}}{40}=\dfrac{-2+\sqrt{629}}{5}\end{matrix}\right.\)
9: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x=28\)
hay x=7
Bài 3:
1: \(35^2=1225\)
2: \(25^2=625\)
3: \(75^2=5625\)
4: \(95^2=9025\)
5: \(101\cdot99=9999\)
6: \(36\cdot44=1584\)
7: \(72\cdot68=4896\)
1: \(x^2-2x+1=\left(x-1\right)^2\)
2: \(4x^2-4x+1=\left(2x-1\right)^2\)
3: \(16x^2+8x+1=\left(4x+1\right)^2\)
4: \(9x^2+12x+4=\left(3x+2\right)^2\)
5: \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
a) \(99^3=\left(100-1\right)^3=100^3-3.100^2+3.100-1=1000000-30000+300-1=970299\)b) \(91^3+3.91^2.9+3.91.9^2+9^3=\left(91+9\right)^3=100^3=1000000\)
c) \(1001^3=\left(1000+1\right)^3=1000^3+3.1000^2+3.1000+1=1003003001\)d) \(102^3-6.102^2+24.102-8=\left(102-2\right)^3+12.102=100^3+1224=1001224\)
Bài 3:
Xét ΔIAB có
\(\widehat{AIB}+\widehat{IAB}+\widehat{IBA}=180^0\)
\(\Leftrightarrow\widehat{IAB}+\widehat{IBA}=115^0\)
hay \(\widehat{DAB}+\widehat{ABC}=230^0\)
Xét tứ giác ABCD có
\(\widehat{D}+\widehat{C}+\widehat{DAB}+\widehat{CBA}=360^0\)
\(\Leftrightarrow\widehat{D}+\widehat{C}=150^0\)
mà \(\widehat{C}-\widehat{D}=10^0\)
nên \(2\cdot\widehat{C}=160^0\)
\(\Leftrightarrow\widehat{C}=80^0\)
\(\Leftrightarrow\widehat{D}=70^0\)