Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
Xét tứ giác ABEC có
AB//EC
AC//BE
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
mà AC=BD
nên BE=BD
hay ΔBED cân tại B
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
3x2-75=0
<=> 3x2=75
<=> x2=25
<=> x=5
2x2-98=0
<=> 2x2=98
<=> x2=49
<=> x=7
x2-7x=0
<=> x(x-7)=0
<=> x=0 hoặc x=7
-3x2+5x=0
x(-3x+5)=0
x=0 hoặc -3x+5=0
x=0 hoặc -3x=-5
x=0 hoặc x=5/3
x2+4x+4=0
(x+2)2=0
x+2=0
x=-2
1. 3x2 - 75 = 0
<=> 3x2 = 75
<=> x2 = 25
<=> x = \(\sqrt{25}\)
<=> x = 5
2. x2 - 7x = 0
<=> x(x - 7) = 0
<=> \(\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
3. x2 - 14x + 13 = 0
<=> x2 - 13x - x + 13 = 0
<=> x(x - 13) - (x - 13) = 0
<=> (x - 1)(x - 13) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=13\end{matrix}\right.\)
4. 2x2 - 98 = 0
<=> 2x2 = 98
<=> x2 = 49
<=> x = \(\sqrt{49}\)
<=> x = 7
5. -3x2 + 5x = 0
<=> x(-3x + 5) = 0
<=> \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\end{matrix}\right.\)
6. x2 - 2x - 80 = 0
<=> x2 + 8x - 10x - 80 = 0
<=> x(x + 8) - 10(x + 8) = 0
<=> (x - 10)(x + 8) = 0
<=> \(\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
7. x2 = 81
<=> x2 - 92 = 0
<=> (x - 9)(x + 9) = 0
<=> \(\left[{}\begin{matrix}x-9=0\\x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
8. x2 + 4x + 4 = 0
<=> x2 + 2.x.2 + 22 = 0
<=> (x + 2)2 = 0
<=> 0 = 02 - (x + 2)2
<=> (0 + x + 2)(0 - x + 2) = 0
<=> (x + 2)(-x + 2) = 0
<=> \(\left[{}\begin{matrix}x+2=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
9. 4x2 + 12x + 5 = 0
<=> 4x2 + 2x + 10x + 5 = 0
<=> 2x(2x + 1) + 5(2x + 1) = 0
<=> (2x + 5)(2x + 1) = 0
<=> \(\left[{}\begin{matrix}2x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)