Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\)
Đặt x+y=S
xy=p
\(\hept{\begin{cases}S=1\\\left(S^2-2P\right)^2-2P^2=1\end{cases}}\)
=> \(\left(1-2P\right)^2-2P^2=1\Leftrightarrow2P^2-4P\Leftrightarrow\orbr{\begin{cases}P=0\\P=2\end{cases}}\)
Với S=1; P=0 , x, y là nghiệm phuowg trình: X^2-X=0\(\Leftrightarrow\orbr{\begin{cases}X=0\\X=1\end{cases}}\)Hệ có nghiệm (0; 1) hoặc (1; 0)
Với S=1; P=2; x, y là nghiệm phương trình: x^2-x+2=0 vô nghiệm vì đen ta bé hơn 0 hoăc (x-1/2)^2+7/4 >0
x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)
x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)
Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)
Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0
hay E=0.
Vậy E=0
nhân \(-x+\sqrt{x^2+3}\) vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
<=> \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
<=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
lấy (1) + (2) => 2(x+y) =0 => x+y=0
lấy
\(\sqrt{51-7\sqrt{8}}=\sqrt{7^2-7.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(7-\sqrt{2}\right)^2}=7-\sqrt{2}\)
(vì\(7=\sqrt{49}>\sqrt{2}\Rightarrow7-\sqrt{2}>0\))
mk thực sự ko hiểu vì mk chưa hok đến dạng pt dài như z
mk nghĩ là dùng nhiệt phân muối
PT:\(NaNO_3\rightarrow NO_2+Na_2O\)
trên dấu mũi tên cs điều kiện nhiệt độ,nhưng mk ko chắc là phương trình đúng đâu