![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{9+3+4+5}\)
=\(\sqrt{21}\)
=4,582575695
ai k mình mình k lại
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đầu bài ta có:
\(\frac{1}{5}\cdot a+2+\frac{1}{2}\cdot a+7=a\)
\(\Rightarrow2+7=a-\frac{1}{2}\cdot a-\frac{1}{5}\cdot a\)
\(\Rightarrow a\cdot\frac{3}{10}=9\)
\(\Rightarrow a=30\)
\(\frac{1}{5}a+2+\frac{1}{2}a+7=a\left(\frac{1}{5}+\frac{1}{2}\right)+2+7=\frac{7}{10}a+10=\frac{7a}{10}+10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a) Để hàm số đã cho làm hàm số bậc nhất thì 4 - 3m ≠ 0
⇔ -3m ≠ -4
⇔ m ≠ 4/3
b) Để hàm số đã cho làm hàm đồng biến thì 4 - 3m > 0
⇔ -3m > -4
⇔ m < 4/3
c) Để hàm số đã cho làm hàm nghịch biến thì 4 - 3m < 0
⇔ -3m < -4
⇔ m > 4/3
Bài 3
Thay tọa độ điểm A(1; 10) vào hàm số, ta có:
(4m² - 9).1 + 3 = 10
⇔ 4m² - 9 + 3 = 10
⇔ 4m² - 6 = 10
⇔ 4m² = 10 + 6
⇔ 4m² = 16
⇔ m² = 16 : 4
⇔ m² = 4
⇔ m = 2 hoặc m = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>ΔABC cân tại A
2: Ta có: AB=AC
=>A nằm trên trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà BC\(\perp\)OA
nên OA//CD
3:
a: Ta có: AO là trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔBOA vuông tại B có \(BA^2+BO^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔBAO vuông tại B có BH là đường cao
nên \(BH\cdot OA=BO\cdot BA\)
=>\(BH\cdot2R=R\cdot R\sqrt{3}=R^2\sqrt{3}\)
=>\(BH=\dfrac{R\sqrt{3}}{2}\)
b: Xét ΔOBA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔBOE có OB=OE và \(\widehat{BOE}=60^0\)
nên ΔBOE đều
Ta có: ΔBOE đều
mà BH là đường cao
nên H là trung điểm của OE
Xét tứ giác OBEC có
H là trung điểm chung của OE và BC
=>OBEC là hình bình hành
Hình bình hành OBEC có OB=OC
nên OBEC là hình thoi
TC2: a) Ta có : \(cos^2\alpha=1-sin^2\alpha=1-\left(\frac{2}{3}\right)^2=\frac{5}{9}\)
\(\Rightarrow cos\alpha=\sqrt{\frac{5}{9}}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow\hept{\begin{cases}tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2}{\sqrt{5}}\\cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac{\frac{\sqrt{5}}{3}}{\frac{2}{3}}=\frac{\sqrt{5}}{2}\end{cases}}\)
b)Ta có :\(A=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}=\frac{\frac{2}{3}-\frac{\sqrt{5}}{3}}{\frac{2}{3}+\frac{\sqrt{5}}{3}}=\frac{2-\sqrt{5}}{2+\sqrt{5}}=\frac{\left(2-\sqrt{5}\right)^2}{4-5}=4\sqrt{5}-9\)