K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

2,Có \(\widehat{A}+\widehat{D}=180^0\) (Hai góc trong cùng phía do AB//CD)

\(\Rightarrow\widehat{D}=180^0-115^0=65^0\)

đúng kết quả như ý nghĩ luôn :v

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

7 tháng 3 2016

bài đó mà cũng không biết ,mày không khờ tới mức đó phải không

17 tháng 4 2022

\(\left|2x-3\right|=3-2x\)

\(ĐK:x\le\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)

Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)

10 tháng 11 2021

\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)

10 tháng 11 2021

cảm ơn bạn minh nhiều nha

14 tháng 8 2015

=a2(64x3-27y3)

=a2[(4x)3-(3y)3]

=a2(4x-3y)[(4x)2+4x.3y+(3y)2]

=a2(4x-3y)(16x2+12xy+9y2)

20 tháng 8 2021

a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x^2+2\right)+\left(x-1\right)\left(x+1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x}{x^2+x+1}\)

20 tháng 8 2021

undefined