Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.
\(B=\frac{1}{2020}\)
B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)
= \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)
= \(\frac{1}{2020}\)
\(1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\left(đk:x>2\right)\)
đặt
\(A=1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\)
\(\left(x-1\right)^2A=\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\)
\(\left(x-1\right)^2A-A=\left[\left(x-1\right)^2+\left(x-1\right)^4+\left(x-1\right)^6+...+\left(x-1\right)^{2022}\right]-\left[1+\left(x-1\right)^2+\left(x-1\right)^4+...+\left(x-1\right)^{2020}\right]\)
\(\left[\left(x-1\right)^2-1\right]A=\left(x-1\right)^{2022}-1\)
\(A=\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}\)
\(=>\dfrac{\left(x-1\right)^{2022}-1}{\left(x-1\right)^2-1}=\dfrac{17^{2022}-1}{\left(x-1\right)^2-1}\\ =>\left(x-1\right)^{2022}-1=17^{2022}-1\\ =>\left(x-1\right)^{2022}=17^{2022}\\ =>x-1=17\\ =>x=18\left(tm\right)\)
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}\text{=}-4\)
\(\dfrac{x-4}{2022}+\dfrac{x-3}{2021}+\dfrac{x-2}{2020}+\dfrac{x-1}{2019}+4\text{=}0\)
\(\left(\dfrac{x-4}{2022}+1\right)+\left(\dfrac{x-3}{2021}+1\right)+\left(\dfrac{x-2}{2020}+1\right)+\left(\dfrac{x-1}{2019}+1\right)\text{=}0\)
\(\dfrac{x-2018}{2022}+\dfrac{x-2018}{2021}+\dfrac{x-2018}{2020}+\dfrac{x-2018}{2019}\text{=}0\)
\(\left(x-2018\right)\left(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\right)\text{=}0\)
\(Do:\) \(\dfrac{1}{2022}+\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}\ne0\)
\(x-2018\text{=}0\)
\(x\text{=}2018\)
\(Vậy...\)
`2x-15=-25`
`2x=-10`
`x=-5`
___________
`3/5<x/10<4/5`
`3/5=(3xx10)/(5xx10)=30/50`
`x/10=(5x)/(10xx5)=(5x)/50`
`4/5=(4xx10)/(5xx10)=40/50`
`=>30/50<(5x)/50<40/50`
`=>30<5x<40`
`=>x=7`
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)
b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)
c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)
\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)
\(\Rightarrow x=-2\)
d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)
\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{25}{9}\)
e) \(\dfrac{1}{2}x+650\%x-x=-6\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)
\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)
\(\Rightarrow6x=-6\)
\(\Rightarrow x=\dfrac{-6}{6}=-1\)
g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)
\(\Rightarrow2x-1-3+x=2-x\)
\(\Rightarrow3x-4=2-x\)
\(\Rightarrow3x+x=2+4\)
\(\Rightarrow4x=6\)
\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)
a) \(\dfrac{13}{20}+\dfrac{3}{5}+x=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{5}{4}+x=\dfrac{5}{6}\)
\(\Rightarrow x=\dfrac{5}{6}-\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{-5}{12}\)
b) \(x+\dfrac{1}{3}=\dfrac{2}{5}-\dfrac{-1}{3}\)
\(\Rightarrow x+\dfrac{1}{3}=\dfrac{11}{15}\)
\(\Rightarrow x=\dfrac{11}{15}-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{5}\)
c)\(\dfrac{-5}{8}-x=\dfrac{-3}{20}-\dfrac{-1}{6}\)
\(\dfrac{-5}{8}-x=\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-5}{8}-\dfrac{1}{60}\)
\(\Rightarrow x=\dfrac{-77}{120}\)
d) \(\dfrac{3}{5}-x=\dfrac{1}{4}+\dfrac{7}{10}\)
\(\Rightarrow\dfrac{3}{5}-x=\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{19}{20}\)
\(\Rightarrow x=\dfrac{-7}{20}\)
e) \(\dfrac{-3}{7}-x=\dfrac{4}{5}+\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{-3}{7}-x=\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-3}{7}-\dfrac{2}{15}\)
\(\Rightarrow x=\dfrac{-59}{105}\)
g) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
\(\Rightarrow\dfrac{-5}{6}-x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-5}{6}-\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{-13}{12}\)
\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{2020\cdot2022}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\cdot\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{2021^2-1}\right)\)
\(=\dfrac{2^2-1+2}{2^2-1}\cdot\dfrac{3^2-1+1}{3^2-1}\cdot...\cdot\dfrac{2021^2-1+1}{2021^2-1}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2021^2}{\left(2021-1\right)\left(2021+1\right)}\)
\(=\dfrac{2\cdot3\cdot...\cdot2021}{1\cdot2\cdot3\cdot...\cdot2020}\cdot\dfrac{2\cdot3\cdot...\cdot2021}{3\cdot4\cdot...\cdot2022}\)
\(=\dfrac{2021}{1}\cdot\dfrac{2}{2022}=\dfrac{2021}{1011}\)