K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}\right)^2-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}=\dfrac{3\sqrt{3}-3\sqrt{2}+9}{2+\sqrt{6}}\\ =\dfrac{\left(3\sqrt{3}-3\sqrt{2}+9\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{2}-6\sqrt{3}-6\sqrt{3}+6\sqrt{2}+9\sqrt{6}-18}{2}\\ =\dfrac{15\sqrt{2}-12\sqrt{3}+9\sqrt{6}-18}{2}\)

14 tháng 10 2021

\(c,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\left(tm\right)\\ d,ĐK:x\ge-5\\ PT\Leftrightarrow\sqrt{x+5}=5\Leftrightarrow x+5=25\Leftrightarrow x=20\left(tm\right)\\ e,ĐK:x\ge0\\ PT\Leftrightarrow-2\sqrt{x}=-6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ f,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

2 tháng 9 2021

a, Vì ME là tiếp tuyến đường tròn O và M là tiếp điểm 

=> \(MO\perp MF\) ( t/c tiếp tuyến ) hay ^OME = 900

Vậy tam giác EMO là tam giác vuông tại M

b, mình sửa đề là OE = 60 cm nhé 

Theo định lí Pytago cho tam giác EMO vuông tại M 

\(ME=\sqrt{EO^2-OM^2}=48\)cm 

c, sửa ON vuông OE tại N 

đến đây thì mình chả hiểu đề kiểu gì, chịu, bạn chép đề kiểu gì ấy, sai tào lao sao á, xem lại nhé 

 

a: Xét ΔMEO có \(\widehat{OME}=90^0\)

nên ΔMEO vuông tại M

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+15^2=325\)

hay \(BC=5\sqrt{13}\left(cm\right)\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{15}{5\sqrt{13}}=\dfrac{3}{\sqrt{13}}\)

\(\Leftrightarrow\widehat{B}\simeq56^0\)

b: Xét ΔBAC có 

BI là đường phân giác ứng với cạnh AC

nên \(\dfrac{AI}{AB}=\dfrac{CI}{BC}\)

hay \(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}\)

mà AI+CI=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}=\dfrac{AI+CI}{10+5\sqrt{13}}=\dfrac{15}{10+5\sqrt{13}}=\dfrac{-2+\sqrt{13}}{3}\)

Do đó: \(AI=\dfrac{-20+10\sqrt{13}}{3}\left(cm\right)\)

27 tháng 8 2021

em em cảm cảm ơn anh nhiều lắm ạ

 

13 tháng 5 2021

bài 3 : 

gọi số xe ban đầu của đội là x(xe)(x>2)

sau khi 2 xe điều động đi làm viêc khác thì số xe còn lại là x-2(xe)

theo dự định cả đôi xe phải vận chuyển 120 tấn hàng

nên mỗi xe ban đầu phải vận chuyển:120/x(tấn hàng)

mỗi xe lúc sau( khi có 2 xe bị điều động đi chỗ khác) phải chuyển

120/x-2(tấn hàng)

vì để hoàn thành công việc mỗi xe còn lại phải chở thêm 2 tấn hàng

=>pt:(120/x-2)-120/x=2

giải pt theo \(\Delta\) ta tìm được x1=12(thỏa mãn)

x2=-10(loại)

vậy lúc đầu trong đội có 12 xe

Câu 4: 

a) Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OI là đường trung tuyến ứng với cạnh đáy AB(I là trung điểm của AB)

nên OI là đường cao ứng với cạnh AB(Định lí tam giác cân)

hay OI\(\perp\)AB

Ta có: \(\widehat{OIM}=90^0\)(OI\(\perp\)AB)

nên I nằm trên đường tròn đường kính OM(1)

Ta có: \(\widehat{OCM}=90^0\)(gt)

nên C nằm trên đường tròn đường kính OM(2)

Ta có: \(\widehat{ODM}=90^0\)(gt)

nên D nằm trên đường tròn đường kính OM(3)

Từ (1), (2) và (3) suy ra O,I,C,M,D cùng nằm trên một đường tròn(Đpcm)

10 tháng 11 2021

Sau 2 phút = \(\dfrac{1}{30}\) giờ thì máy bay bay đc \(\dfrac{1}{30}\cdot300=10\left(km\right)\)

Do đó máy bay ở độ cao \(10\cdot\sin25^0\approx4\left(km\right)=4000\left(m\right)\)

25 tháng 5 2021

`1)((sqrt{14}-sqrt7)/(1-sqrt2)+(sqrt{15}-sqrt5)/(1-sqrt3)):1/(sqrt7-sqrt5)`

`=((sqrt7(sqrt2-1))/(1-sqrt2)+(sqrt5(sqrt3-1))/(1-sqrt3):1/(sqrt7-sqrt5)`

`=(-sqrt7-sqrt5):1/(sqrt7-sqrt5)`

`=-(sqrt7+sqrt5).(sqrt7-sqrt5)`

`=-(7-5)`

`=-2`

`2)B=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(x-sqrtx-2)/(x-5sqrtx+6)`

`=((sqrtx-2)(sqrtx+1))/((sqrtx-2)(sqrtx-3))`

`=(sqrtx+1)/(sqrtx-3)`

`x=11+6sqrt2`

`=(3+sqrt2)^2`

`=>B=(4+2sqrt2)/(sqrt2)`

`=2+2sqrt2`

25 tháng 5 2021

`3)5x^4+4x^2-1=0`

Đặt `t=x^2(t>=0)`

`pt<=>5t^2+4t-1=0`

`a-b+c=0`

`=>t_1=-1(l),t_2=1/5(tm)`

`<=>x=+-sqrt{1/5}`

Vậy `S={-sqrt{1/5},+sqrt{1/5}}`