Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3M = 3 + 32 + 33 + 34 +...+ 326 => 3M - M = 3 + 32 + 33 + 34 +...+ 326 - ( 1 + 3 + 32 + 33 +...+ 325 ) = 325 - 1 => M = \(\frac{3^{25}-1}{2}\)
a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)
b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}
Bài 1: Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath
1. Tìm n thuộc N để các biểu thức là số nguyên tố
a ) \(P=\left(n-3\right)\left(n+3\right)\)
\(\left(n-3\right)\left(n+3\right)=0\)
\(n^2-3^2=0\)
\(n^2-9=0\)
\(n^2=9\)
\(n=\sqrt{9}\)
\(n=3\)
- Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)
- Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)
- Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)
Do đó, (3) là kết luận sai
Từ (1) và (2) cho thấy 2n + 6 chia hết cho n
Vì 2n chia hết cho n nên 6 chia hết cho n
Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)
Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)
Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn
=> m = 2.2 + 5 = 9
Vậy m = 9; n = 2 thỏa mãn đề bài
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
|a-c|<3
=>-3<a-c<3
|b-c|<2
=>|c-b|<2
=>-2<c-b<2
-3<a-c<3
-2<c-b<2
=>-5<a-c+c-b<3+2
=>-5<a-b<5
=>|a-b|<5
ta có
\(\frac{3}{m}-\frac{n}{2}=\frac{3}{4}\Leftrightarrow\frac{6-mn}{2m}=\frac{3}{4}\Leftrightarrow24-4mn=6m\)
\(\Leftrightarrow4nm+6m=24\Leftrightarrow2m\left(2n+3\right)=24\)
Do 2n+3 là số lẻ và là ước của 24 nên
\(2n+3\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{-3,-2,-1,0\right\}\)
tương ứng với n ta có \(m\in\left\{-4,-12,12,4\right\}\)
a) ta có: \(M=1+3+3^2+3^3+...+3^{119}\)
\(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(M=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{117}.\left(1+3+3^2\right)\)
\(M=\left(1+3+3^2\right).\left(1+3^3+...+3^{117}\right)\)
\(M=13.\left(1+3^3+...+3^{117}\right)⋮13\left(đpcm\right)\)
b) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(\Rightarrow N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}< 1\left(đpcm\right)\)
a, \(M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(1+3^3+3^6+...+3^{117}\right)\)
\(=13.\left(1+3^3+...+3^{117}\right)⋮13\)
b, \(N=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2010.2010}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow N< 1\)
M = 1 + 3 + 3^2 + ... + 3^25
3M = 3 + 3^2 + ... + 3^26
3M - M = ( 3 + 3^2 + ... + 3^26 ) - ( 1 + 3 + ... + 3^25 )
2M = 3^26 - 1
M = ( 3^26 - 1 ) : 2
N - M = [( 3^26 - 1 ) : 2 ] - ( 3^26 : 2 )
N - M = 3^26 : 2 - 1 : 2 - 3^26 : 2
N - M = -1/2