Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x.\(\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}\right)=-1\frac{3}{5}\)
x.\(\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{1}{2}-\frac{1}{17}\right)=\frac{-8}{5}\)
x.\(\left(\frac{17}{34}-\frac{2}{34}\right)=\frac{-8}{5}\)
x.\(\frac{15}{34}=\frac{-8}{5}\)
x\(=\frac{-8}{5}:\frac{15}{34}\)
x\(=\frac{-8}{5}.\frac{34}{15}\)
x\(=\frac{-272}{75}\)
Vậy x\(=\frac{-272}{75}\)
mk làm phần a thui nhé
a. A = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6
A = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6
A = 1/2 - 1/6
A= 3/6 - 1/6
A = 1/3
\(B=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\)
\(b=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(b=\frac{1}{2}-\frac{1}{14}\)
\(b=\frac{3}{7}\)
\(d=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(d=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(d=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(d=1-\frac{1}{11}\)
\(d=\frac{10}{11}\)
\(e=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(e=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(e=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{17\cdot20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(e=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)
Cau a) 1/1.2 +1/2.3 +1/3.4+...+1/99.100= 1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100=99/100
99/100<1 thì 1/1.2 +1/2.3+1/3.4+...+1/99.100<1
Câu b): Ta có: 1/2^2<1/1.2
1/3^2<1/2.3
...............(so sánh như vậy với các số khác)
1/2016^2<1/2015.2016
Áp dụng của câu a ta thêm vào sau về thành: 1/1.2+1/2.3+1/3.4+...+1/2015.2016
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016
=1/1-1/2016
=2015/2016<1
Ma :1/2^2+1/3^2+1/4^2+...+1/2016^2<1/1.1+1/2.3+1/3.4+...+1/2015.2016
Nen:1/1^2+1/3^2+1/4^2+...+1/2016^2<1
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6