K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có thể xây dựng cách phân tích thừa số đơn giản như sau:  \(4018=2.2009\)

Từ đó, dễ dàng thành lập được một biểu thức số có dạng  \(P=20092009...200940184018...4018\)  luôn chia hết cho  \(2009\)  \(\text{(}\)  với  \(x\)  là số các số  \(2009,\)  \(y\) là số các số  \(4018\)  \(\text{)}\)

Khi đó, tổng các chữ số cần tìm của  \(P\)  là  \(\left(2+0+0+9\right).x+\left(4+0+1+8\right).y=11x+13y\)

Mặt khác, do  \(P\)  có tổng chữ số là  \(2010\)  hay nói cách khác   \(11x+13y=2010\)  \(\left(\alpha\right)\)

Ta phải cần tìm  \(x,y\in Z^+\)  để thỏa mãn điều kiện phương trình  \(\left(\alpha\right)\)  có nghiệm 

Thật vậy, nhận thấy  \(x=y=0\)  không là nghiệm của  phương trình  \(\left(\alpha\right)\)

Do đó, từ  \(\left(\alpha\right),\)suy ra  \(x=\frac{2010-13y}{11}=183-y-\frac{2y+3}{11}\)

Để  \(x\in N\)  thì  \(\frac{2y+3}{11}\in N\)  tức là  \(2y+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Với chú ý rằng  \(2y+3>3\)  (do  \(y>0\)  ), kết hợp với điều ở trên, ta suy ra được  \(2y+3=11\)

Hay  \(y=8\)  \(\left(\beta\right)\)

Từ  \(\left(\alpha\right),\) \(\left(\beta\right)\) dễ dàng tính được  \(x=178\) \(\left(\text{ t/m ĐK}\right)\)

Vậy, với  \(P=20092009...200940184018...4018\)    \(\text{(}\)  trong đó, có  \(178\) số  \(2009,\) \(8\) số  \(4018\)  \(\text{)}\)  thì thỏa mãn yêu cầu đề bài đã cho, nghĩa là  có ít nhất một số tự nhiên tồn tại chia hết cho  \(2009\)  với  tổng các chữ số là    \(2010\)

19 tháng 7 2016

CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010  2009

7 tháng 6 2020

Đó là số \(10000101\)

22 tháng 11 2015

dài quá hỏi từng câu thôi nhé