K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2023

ta có

4x6x8 = 8x2x3x4

(2+2)(3+3)(4+4) = 8x2x3x4

(a+2)(b+3)(c+4) = 8abc 

vậy a=2 b=3 c=4 

cách này chx chắc đúng 

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

30 tháng 9 2018

Áp dụng bđt Holder ta được:

\(9\left(a^3+b^3+c^3\right)=3.3.\left(a^3+b^3+c^3\right)=\left(1+1+1\right)\left(1+1+1\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3=1\Rightarrow A\ge\frac{1}{9}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

1 tháng 10 2018

c/m bất đẳng thức Holder:

Cho a,b,c,x,y,z,m,n,p là các số thực dương. Khi đó ta có:

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Sử dụng bất đẳng thức AM-GM (Cô-si) ta có:

\(\frac{a^3}{a^3+b^3+c^3}+\frac{x^3}{x^3+y^3+z^3}+\frac{m^3}{m^3+n^3+p^3}\ge\frac{3axm}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

Tương tự:

\(\frac{b^3}{a^3+b^3+c^3}+\frac{y^3}{x^3+y^3+z^3}+\frac{n^3}{m^3+n^3+p^3}\ge\frac{3byn}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\frac{c^3}{a^3+b^3+c^3}+\frac{z^3}{x^3+y^3+z^3}+\frac{p^3}{m^3+n^3+p^3}\ge\frac{3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Rightarrow3\ge\frac{3axm+3byn+3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}\ge axm+byn+czp\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Đẳng thức xảy ra khi các biến bằng nhau