K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài 1: Giả sử

\(8-\sqrt{2}>4+\sqrt{5}\)

\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)

\(\Leftrightarrow16>7+2\sqrt{10}\)

\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)

Vậy \(8-\sqrt{2}>4+\sqrt{5}\)

10 tháng 11 2016

Bài 3: Ta có

\(x^2+2015x-2014=2\sqrt{2017x-2016}\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)

\(\Leftrightarrow x=1\)

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2

20 tháng 9 2021
a) tam giác ABH là tam giác vuông nên AB^2 - BH^2 = AH (1) chứng minh tương tự với tam giác ACH suy ra AC^2 - CH^2 = AH^2 (2) Từ (1) và (2) ta suy ra AB^2 - BH^2 = AC^2 - CH^2 câu b mình chưa biết làm nha :))