
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)
\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)
\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)
\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

\(x+y+z=0\rArr\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\rArr x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\rArr x^2+y^2+z^2=0\) (do \(xy+yz+xz=0\) )
\(\rArr x=y=z=0\)
Do đó:
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}=-1+0+1=0\)

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC
=>FE là đường trung bình của ΔABC
=>FE//BC và \(FE=\frac12BC\)
=>BFEC là hình thang
Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BFEC là hình thang cân
b: Xét ΔABC có
F,D lần lượt là trung điểm của BA,BC
=>FD là đường trung bình của ΔABC
=>FD//AC và \(FD=\frac{AC}{2}\)
Xét ΔMAC có
I,K lần lượt là trung điểm của MA,MC
=>IK là đường trung bình củaΔMAC
=>IK//AC và \(IK=\frac{AC}{2}\)
Ta có: FD//AC
IK//AC
Do đó: FD//IK
Ta có: \(FD=\frac{AC}{2}\)
\(IK=\frac{AC}{2}\)
Do đó: FD=IK
Xét tứ giác FDKI có
FD//IK
FD=IK
Do đó: FDKI là hình bình hành
c: HK=HM+KM
\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)
=FE
Xét tứ giác FEKH có
FE//KH
FE=KH
Do đó: FEKH là hình bình hành
=>FK cắt EH tại trung điểm của mỗi đường(1)
FDKI là hình bình hành
=>FK cắt DI tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra FK,EH,DI đồng quy
d: ΔABC đều
mà AD là đường trung tuyến
nên AD là phân giác của góc BAC và AD⊥BC
=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)
Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)
nên APMD là tứ giác nội tiếp đường tròn đường kính AM
=>APMD nội tiếp (I)
Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD
=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)
Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)
nên ΔIPD đều

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

a:
b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)
Ta có: ABCD là hình thang
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{BCD}<180^0-90^0=90^0\)
=>\(\hat{BCD}<\hat{BAD}\)
TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)
Ta có: ABCD là hình thang
DC//AB
=>\(\hat{CDA}+\hat{DAB}=180^0\)
=>\(\hat{DAB}<180^0-90^0=90^0\)
=>\(\hat{DAB}<\hat{DCB}\)
c: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành

32: \(16\left(x-y\right)^2-25\left(x+y\right)^2\)
\(=\left(4x-4y\right)^2-\left(5x+5y\right)^2\)
=(4x-4y-5x-5y)(4x-4y+5x+5y)
=(-x-9y)(9x+y)
31: \(4\left(x+6\right)^2-9\left(x+1\right)^2\)
\(=\left(2x+12\right)^2-\left(3x+3\right)^2\)
=(2x+12-3x-3)(2x+12+3x+3)
=(-x+9)(5x+15)
=5(-x+9)(x+3)
30: \(9\left(x-3\right)^2-25\)
\(=\left(3x-9\right)^2-25\)
=(3x-9-5)(3x-9+5)
=(3x-14)(3x-4)
29: \(\left(3x+1\right)^2-\left(x-2\right)^2\)
=(3x+1-x+2)(3x+1+x-2)
=(2x+3)(4x-1)
28: \(\left(x+9\right)^2-\left(3x+5\right)^2\)
=(x+9+3x+5)(x+9-3x-5)
=(-2x+4)(4x+14)
\(=-2\left(x-2\right)\cdot2\cdot\left(2x+7\right)=-4\left(x-2\right)\left(2x+7\right)\)
27: \(\left(2x-1\right)^2-\left(x-1\right)^2\)
=(2x-1-x+1)(2x-1+x-1)
=x(3x-2)
26: \(81-\left(4a+5\right)^2\)
\(=9^2-\left(4a+5\right)^2\)
=(9-4a-5)(9+4a+5)
=(-4a+4)(4a+14)
\(=-4\left(a-1\right)\cdot2\cdot\left(2a+7\right)=-8\cdot\left(a-1\right)\left(2a+7\right)\)
25: \(100-\left(2x-y\right)^2\)
\(=10^2-\left(2x-y\right)^2\)
=(10-2x+y)(10+2x-y)
24: \(\left(x+y\right)^2-x^2\)
=(x+y-x)(x+y+x)
=y(2x+y)
23: \(\left(3x-1\right)^2-4\)
\(=\left(3x-1\right)^2-2^2\)
=(3x-1-2)(3x-1+2)
=(3x-3)(3x+1)
=3(x-1)(3x+1)
64: \(5a^3b-10a^2b^2+5ab^3\)
\(=5ab\cdot a^2-5ab\cdot2ab+5ab\cdot b^2\)
\(=5ab\left(a^2-2ab+b^2\right)=5a\left(a-b\right)^2\)
63: \(a^2b+2ab^2+b^3\)
\(=b\left(a^2+2ab+b^2\right)\)
\(=b\left(a+b\right)^2\)
62: \(x^3-x^2y-a^2x+a^2y\)
\(=x^2\left(x-y\right)-a^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-a^2\right)=\left(x-y\right)\left(x-a\right)\left(x+a\right)\)
61: \(x^3-1+x-x^2\)
\(=x^3-x^2+x-1\)
\(=x^2\cdot\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^2+1\right)\)
60: \(8x^3+ay-4x^2y-2ax\)
\(=8x^3-4x^2y+ay-2ax\)
\(=4x^2\left(2x-y\right)-a\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2-a\right)\)
58: 5ax-15ay-x+3y
=5a(x-3y)-(x-3y)
=(x-3y)(5a-1)
57: \(4xy-ay+8x^2-2ax\)
=y(4x-a)+2x(4x-a)
=(4x-a)(2x+y)
56: \(ax-2x-a^2+2a\)
\(=x\left(a-2\right)-a\left(a-2\right)\)
=(a-2)(x-a)

Bài 13:
a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)
\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)
\(=\left(x-2y\right)^2\)
b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)
\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)
\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)
=5(a-b)+2
c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)
\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)
\(=x^2-2xy+4y^2\)
Bài 11:
a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2
Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)
=>\(\left(a+1\right)\left(a+2-a\right)=52\)
=>2(a+1)=52
=>a+1=26
=>a=25
Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27
b: a chia 5 dư 1 nên a=5x+1
b chia 5 dư 4 nên b=5y+4
ab+1
\(=\left(5x+1\right)\left(5y+4\right)+1\)
=25xy+20x+5y+4+1
=25xy+20x+5y+5
=5(5xy+4x+y+1)⋮5
c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
=6n⋮6
Bài 8:
a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)
\(=x^2+2xy+y^3\)
Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b: x=-1;y=-1
=>xy=1
\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)
=>B=1-1+1-1+1=1

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?
a: Xét ΔABC vuông tại B và ΔABE vuông tại B có
AB chung
BC=BE
=>ΔABC=ΔABE
=>góc EAB=góc CAB
=>AB là phân giác của góc EAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
c: ΔAMH=ΔANH
=>HM=HN
mà HN<HC
nên HM<HC
e: Xét ΔAEC có
AB,CM là đường cao
AB cắt CM tại H
=>H là trực tâm
=>EH vuông góc AC
mà HN vuông góc AC
nên E,H,N thẳng hàng
vẽ hình vs lm câu d giúp mik đc k?