Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vi 2018/2019<1
2019/2020<1
2020/2021<1
nen 2018/2019 + 2019/2020 + 2020/2021<1+1+1=3
\(\frac{1}{4}:\frac{x}{9}=\frac{1}{4}\)
\(\frac{x}{9}=\frac{1}{4}:\frac{1}{4}\)
\(\frac{x}{9}=1\)
\(\Rightarrow x=9\)
\(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)
13 + \(x\) = 20 \(\times\) \(\dfrac{3}{4}\)
13 + \(x\) = 15
\(x\) = 15 - 13
\(x\) = 2
Cách khác :
\(\dfrac{13+x}{20}=\dfrac{3}{4}\)
\(\dfrac{13+x}{20}=\dfrac{15}{20}\)
\(13+x=15\)
\(x=15-13\)
\(x=2\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
\(\dfrac{2}{5}+\dfrac{4}{9}=\dfrac{18}{45}+\dfrac{20}{45}=\dfrac{18+20}{45}=\dfrac{38}{45}\)
= 14 : ( 14/3 - 14/9 ) + 14 : ( 2/3 + 8/9 )
= 14 : 28/9 + 14 : 14/9
= 14 * 9/28 + 14 * 9/14
= 14 * ( 9/28 + 9/14 )
= 14 * 27/28
= 27/2
Ta có:
A=\(14:\left(\frac{14}{3}-\frac{14}{5}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
\(=14:\left(\frac{14}{3}-\frac{14}{5}+\frac{2}{3}+\frac{8}{9}\right)\)
\(=14:\left(\frac{42+6+8}{3}-\frac{14}{5}\right)\)
\(=14:\left(\frac{56}{3}-\frac{14}{5}\right)\)
\(=14:\left(\frac{280-42}{15}\right)=14:\left(\frac{238}{15}\right)=14\cdot\frac{15}{238}=\frac{210}{238}\)
ko biết có tính sai chỗ nào ko
\(\dfrac{1}{4}\)+\(\dfrac{9}{20}\)
=\(\dfrac{5}{20}\)+\(\dfrac{9}{20}\)=\(\dfrac{5+9}{20}\)=\(\dfrac{14}{20}\)=\(\dfrac{7}{5}\)
\(\dfrac{1}{4}+\dfrac{9}{20}=\dfrac{5}{20}+\dfrac{9}{20}=\dfrac{14}{20}=\dfrac{7}{10}\)