Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. -(b-a)3= -b3+a3 (phá ngoặc trước có dấu trừ nên đổi dấu)
= a3 - b3 = (a-b)3
b)
\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right)b+b^2\\ =a^2+2ab+b^2=\left(a+b\right)^2\)
a ) \(\left(x+y\right)^3+\left(x-y\right)^3-2x^3\)
\(=x^3+3x^2y+3y^2x+y^3+x^3-3x^2y+3y^2x-y^3-2x^3\)
\(=\left(x^3+x^3-2x^3\right)+\left(y^3-y^3\right)+\left(3x^2y-3x^2y\right)+\left(3y^2x+3y^2x\right)\)
\(=6y^2x\)
b ) \(\left(x+y\right)^2-\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)+x^2-y^2\)
\(=2y.2x+x^2-y^2\)
\(=x^2-y^2+4xy\)
c ) \(\left(3x+1\right)^2+2\left(9x^2-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1\right)^2+2\left(3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(3x+1+3x-1\right)^2\)
\(=\left(6x\right)^2=36x^2\)
d ) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)
\(=\left(a+b+c-b-c\right)^2\)
\(=a^2\)
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
a) \(\left(a-b\right)^3=-\left(b-a\right)^3\)
Ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(=-\left(b^3-3ab^2+3a^2b-a^3\right)\)
\(=-\left(b-a\right)^3\)
Vậy..
c) \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
Ta có: \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
\(=x^3-6x^2y+9xy^2+y^3+y^3-6xy^2+9x^2y\)
\(=x^3-3x^2y\left(2-3\right)+3xy^2\left(3-2\right)+y^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x+y\right)^3\)
Vậy..
d)\(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(y^2+3x^2\right)\)
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2+x^2+y^2\right)\)
\(=2y\left(y^2+3x^2\right)\)
Vậy...
b đề bị gi` thế