Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy 5=4+1=x+1
Thay vào C,ta có:
\(C=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1=x-1=4-1=3\)
a: MNPQ là hình bình hành
=>MQ//NP
=>MQ//IP
Xét tứ giác MIPQ có IP//MQ
nên MIPQ là hình thang
b: ΔMNP vuông cân tại N
=>MN=NP và \(\widehat{MNP}=90^0\)
Hình bình hành MNPQ có \(\widehat{MNP}=90^0\)
nên MNPQ là hình chữ nhật
=>\(\widehat{Q}=\widehat{P}=90^0\)
Xét ΔMNI vuông tại N có \(sinNMI=\dfrac{NI}{MN}=\dfrac{2}{3}\)
nên \(\widehat{NMI}\simeq42^0\)
\(\widehat{NMI}+\widehat{QMI}=\widehat{NMQ}=90^0\)
=>\(\widehat{QMI}+42^0=90^0\)
=>\(\widehat{QMI}=48^0\)
IP//MQ
=>\(\widehat{QMI}+\widehat{MIP}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{MIP}+48^0=180^0\)
=>\(\widehat{MIP}=132^0\)
Bài 3:
a: \(15x^2y-10xy^2=5xy\left(3x-2y\right)\)
b: \(x^2+2xy+y^2-9=\left(x+y-3\right)\left(x+y+3\right)\)
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1=abc+\left(a+b+c\right)-\left(ab+bc+ca\right)-1\)\(\left(a-\dfrac{1}{b}\right)\left(b-\dfrac{1}{c}\right)\left(c-\dfrac{1}{a}\right)\ge\left(a-\dfrac{1}{a}\right)\left(b-\dfrac{1}{b}\right)\left(c-\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)}{abc}\ge\dfrac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)
\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (do a,b,c>1)
\(\Leftrightarrow a^2b^2c^2+\left(ab+bc+ca\right)-\left(ab^2c+a^2bc+abc^2\right)-1=a^2b^2c^2+\left(a^2+b^2+c^2\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow ab+bc+ca-a^2bc-ab^2c-abc^2=a^2+b^2+c^2-a^2b^2-b^2c^2-c^2a^2\)
\(\Leftrightarrow ab+bc+ca-a^2bc-ab^2c-abc^2-a^2-b^2-c^2+a^2b^2+b^2c^2+c^2a^2=0\)
\(\Leftrightarrow bc\left(a^2-1\right)+ca\left(b^2-1\right)+ab\left(c^2-1\right)+a^2\left(b^2-1\right)+b^2\left(c^2-1\right)+c^2\left(a^2-1\right)=0\)
(luôn đúng do a,b,c>1)
cảm ơn nha