Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
H là trực tâm của tg ABC
\(\Rightarrow AH\perp BC\) (Trong tg 3 đường cao đồng quy tại 1 điểm)
b/
Xét 2 tg vuông ACD và tg vuông BCE có
\(\widehat{ACB}\) chung => tg ACD đồng dạng với tg BCE
\(\Rightarrow\dfrac{CD}{CE}=\dfrac{CA}{CB}\Rightarrow CE.CA=CD.CB\)
xét tam giác ABC có
CF vuông gọc với AB
BE vuông góc với AC
suy ra AH vuông góc với BC ( đường cao thứ ba )
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc
góc EAB chung
Do đó:ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AF\cdot AB\)
b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc HBD chung
Do đó:ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BH\cdot BE\)
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại D
b: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc BCE chung
=>ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
=>CD*CB=CE*CA