Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B lớn nhất khi x^2 - 2x + 5 nhỏ nhất.
Ta có: x^2 - 2x + 5 = (x - 1)^2 + 4 >= 4
--> x^2 - 2x + 5 nhỏ nhất bằng 4 (khi x = 1)
--> B lớn nhất bằng 2/4 = 1/2 (khi x = 1)
\(B=\dfrac{2}{x^2-2x+5}\)
Ta có:
\(x^2-2x+5\\ =\left(x^2-2x+4\right)-4+5\\ =\left(x-2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1\forall x\\ \Rightarrow\dfrac{2}{\left(x-2\right)^2+1}\le2\forall x\\ \Rightarrow B\le2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)
Vậy GTLN của B là 2 <=> x =2
a: N là trung điểm của BC
=>NB=NC=4cm
Xét ΔNAB có NH là phân giác
nên AH/HB=AN/NB=5/4
Xét ΔNAC có NI là phân giác
nên AI/IC=AN/NC=5/4
=>AH/HB=AI/IC
b: Xét ΔABC có AH/HB=AI/IC
nênHI//BC
c: Xét ΔABN có HE//BN
nên HE/BN=AE/AN
Xét ΔACN có EI//NC
nên EI/NC=AE/AN
=>HE/BN=EI/NC
mà BN=NC
nên HE=EI
=>E là trung điểm của HI
d: Sửa đề: ΔABN
Xét ΔAHE và ΔABN có
góc AHE=góc ABN
góc HAE chung
=>ΔAHE đồng dạng với ΔABN
\(1,\\ a,=6x^4y^4-x^3y^3+\dfrac{1}{2}x^4y^2\\ b,=4x^3+5x^2-8x^2-10x+12x+15\\ =4x^3-3x^2+2x+15\\ 2,\\ a,=7\left(x^2-6x+9\right)=7\left(x-3\right)^2\\ b,=\left(x-y\right)^2-36=\left(x-y-6\right)\left(x-y+6\right)\\ 3,\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow x\left(x-0,6\right)\left(x+0,6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,6\\x=-0,6\end{matrix}\right.\)
nó bị lỗi nên mình làm câu khác rồi
câu hỏi đây nè bạn
Tìm GTLN của \(A=\dfrac{\left(x+2\right)^2}{2}\times\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
\(P=\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left(\dfrac{x}{y}-\dfrac{y}{x}\right)\left(\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}\right)\)
\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x-y\right)}-\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x+y\right)}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{x^2+2xy+y^2-x^2+2xy-y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+xy+y^2-x^2+xy-y^2}{xy}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\cdot\dfrac{4xy}{\left(x-y\right)\left(x+y\right)}\)
\(=2-4=-2\)
a: \(AO=\dfrac{1}{2}AC\)(O là trung điểm của AC)
nên AO=AD
hay ΔAOD cân tại A
\(A=-2\left(x^2-\dfrac{1}{2}x\right)=-2\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=-2\left(x^2-2x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{8}=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\)
\(\Rightarrow A_{max}=\dfrac{1}{8}\)