K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(\Rightarrow P=\left(\dfrac{\left(y-x\right)\left(y+x\right)}{y-x}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x+y\right)}\right).\dfrac{x+y}{y^2-2xy+x^2+xy}\)

\(\Rightarrow P=\left(y+x-\dfrac{x^2+xy+y^2}{x+y}\right).\dfrac{x+y}{y^2-xy+x^2}\)

\(\Rightarrow P=\dfrac{\left(x+y\right)^2-\left(x^2+xy+y^2\right)}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)

\(\Rightarrow P=\dfrac{x^2+2xy+y^2-x^2-xy-y^2}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)

\(\Rightarrow P=\dfrac{xy}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)

\(\Rightarrow P=\dfrac{xy}{y^2-xy+x^2}\)

 

10 tháng 10 2021

\(P=\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left(\dfrac{x}{y}-\dfrac{y}{x}\right)\left(\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}\right)\)

\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x-y\right)}-\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x+y\right)}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{x^2+2xy+y^2-x^2+2xy-y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+xy+y^2-x^2+xy-y^2}{xy}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\cdot\dfrac{4xy}{\left(x-y\right)\left(x+y\right)}\)

\(=2-4=-2\)

NV
25 tháng 3 2022

4.

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(S=\sum\dfrac{\dfrac{1}{y^2}}{\dfrac{1}{x}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}=\sum\dfrac{x^3}{x^2+y^2}=\sum\left(x-\dfrac{xy^2}{x^2+y^2}\right)\)

\(S\ge\sum\left(x-\dfrac{xy^2}{2xy}\right)=\sum\left(x-\dfrac{y}{2}\right)=\dfrac{x+y+z}{2}=\dfrac{3}{2}\)

\(S_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

NV
25 tháng 3 2022

5.

Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

Đặt vế trái là P

\(P=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)

Quay lại dòng 3 của bài số 4

15 tháng 10 2021

g: \(a^3-a^2+9a-9\)

\(=a^2\left(a-1\right)+9\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2+9\right)\)

Câu 19: 

\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}=6\)

Câu 20: 

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)

\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)

23 tháng 8 2023

Rút gọn đúng không=)

\(\left(2x-3\right)\left(x+2\right)-\left(4x-2\right)\left(x-5\right)\\ =2x^2+4x-3x-6-\left(4x^2-20x-2x+10\right)\\ =2x^2+x-6-4x^2+20x+2x-10\\ =-2x^2+23x-16\)

Bài 15:

\(P=\dfrac{x+y-1}{x\left(x+y\right)}+\dfrac{x-y}{2xy}\cdot\dfrac{xy+y^2+xy-y^2}{x\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{x}\)