Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Thay x=-2 và y=0 vào (d), ta được:
-2(m-1)+4=0
=>-2(m-1)=-4
=>m-1=2
=>m=3
b: (d): y=2x+4
a/ Hai hàm số có đồ thị // với nhau khi
\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)
b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ
\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)
c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được
\(b=ma+3\)
\(\Leftrightarrow ma+3-b=0\)
Để phương trình này không phụ thuôc m thì
\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Tọa độ điểm cần tìm là M(0, 3)
d/ Ta có khoản cách từ O(0,0) tới (d) là 1
\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)
\(\Leftrightarrow\sqrt{1+m^2}=3\)
\(\Leftrightarrow m^2=8\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)
a: Thay x=1 và y=2 vào y=(m-1)x+4, ta được:
1(m-1)+4=2
=>m-1+4=2
=>m+3=2
=>m=-1
b:
(d): y=(m-1)x+4
=>(m-1)x-y+4=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để d(O;(d))=2 thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
Bài 2:
a: Phương trình hoành độ giao điểm là:
x-2=2-x
\(\Leftrightarrow2x=4\)
hay x=2
Thay x=2 vào (d1), ta được:
y=2-2=0
Thay x=2 và y=0 vào (d3), ta được:
2(2-m)+1=0
\(\Leftrightarrow4-2m+1=0\)
hay \(m=\dfrac{5}{2}\)
a: Thay x=2 và y=-1 vào (d), ta được:
2(m-2)+5=-1
=>2(m-2)=-6
=>m-2=-3
=>m=-1
b: (d): y=(m-2)x+5
=>(m-2)x-y-5=0
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m-2\right)+0\left(-1\right)-5\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d))=3 thì \(\dfrac{5}{\sqrt{\left(m-2\right)^2+1}}=3\)
=>\(\sqrt{\left(m-2\right)^2+1}=\dfrac{5}{3}\)
=>\(\left(m-2\right)^2+1=\dfrac{25}{9}\)
=>\(\left(m-2\right)^2=\dfrac{16}{9}\)
=>\(\left[{}\begin{matrix}m-2=\dfrac{4}{3}\\m-2=-\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{10}{3}\\m=\dfrac{2}{3}\end{matrix}\right.\)
a: Thay x=7 và y=2 vào (d), ta được:
7(m+1)+m-1=2
=>7m+7+m-1=2
=>8m+6=2
=>8m=-4
=>\(m=-\dfrac{1}{2}\)
b: Thay x=2 vào y=3x-4, ta được:
\(y=3\cdot2-4=2\)
Thay x=2 và y=2 vào (d), ta được:
2(m+1)+m-1=2
=>2m+2+m-1=2
=>3m+1=2
=>3m=1
=>\(m=\dfrac{1}{3}\)
c: Tọa độ giao điểm của hai đường d1 và d2 là:
\(\left\{{}\begin{matrix}2x-1=x-8\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-x=-8+1\\y=2x-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-7\\y=2\left(-7\right)-1=-15\end{matrix}\right.\)
Thay x=-7 và y=-15 vào d, ta được:
\(-7\left(m+1\right)+m-1=-15\)
=>-7m-7+m-1+15=0
=>-6m+7=0
=>-6m=-7
=>\(m=\dfrac{7}{6}\)
c: y=(m-1)x+4
=>\(\left(m-1\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)