K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AKHB có

\(\widehat{AKB}=\widehat{AHB}=90^0\)

=>AKHB là tứ giác nội tiếp đường tròn đường kính AB

=>A,K,H,B cùng thuộc đường tròn đường kính AB

b1: AC=5cm

mà AB=AC

nên AB=5cm

ΔAKB vuông tại K

=>\(AK^2+KB^2=AB^2\)

=>\(KB^2=5^2-4^2=9\)

=>\(KB=\sqrt{9}=3\left(cm\right)\)

Xét ΔAKB vuông tại K có KI là đường cao

nên \(AI\cdot AB=AK^2\)

=>\(AI\cdot5=4^2=16\)

=>AI=16/5=3,2(cm)

b2: Gọi O là trung điểm của AB

Theo đề, ta có: KF\(\perp\)AB tại I

=>OI\(\perp\)FK tại I

Ta có: ΔOKF cân tại O

mà OI là đường cao

nên I là trung điểm của FK

Xét ΔAFK có

AI là đường cao

AI là đường trung tuyến

Do đó: ΔAFK cân tại A

 

8 tháng 12 2023

Anh ơi giải câu hỏi em mới đăng với nha anh em cần gấp ạ do là em sắp học thêm ấy ạ

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)