Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}\)
\(2y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{x+z}{20+6}=\dfrac{52}{26}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=20.2=40\\y=15.2=30\\z=6.2=12\end{matrix}\right.\)
Bài 6:
Xét ΔOAC vuông tại A và ΔOBD vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BOD}\)(hai góc đối đỉnh)
Do đó: ΔOAC=ΔOBD
=>OC=OD
Bài 7:
a: Ta có: \(\widehat{DAB}+\widehat{BAC}+\widehat{CAE}=180^0\)
=>\(\widehat{DAB}+\widehat{CAE}+90^0=180^0\)
=>\(\widehat{DAB}+\widehat{CAE}=90^0\)
mà \(\widehat{DAB}+\widehat{DBA}=90^0\)
nên \(\widehat{DBA}=\widehat{CAE}\)
Xét ΔABD vuông tại A và D và ΔCAE vuông tại E có
AB=AC
\(\widehat{DBA}=\widehat{EAC}\)
Do đó: ΔABD=ΔCAE
b: ta có: ΔABD=ΔCAE
=>DB=AE và AD=CE
DB+CE=DA+AE=DE
\(5,\\ a,\left\{{}\begin{matrix}AB=CD\left(gt\right)\\AD=BC\left(gt\right)\\AC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.c.c\right)\\ b,\Delta ABC=\Delta CDA\left(cm.trên\right)\\ \Rightarrow\left\{{}\begin{matrix}\widehat{CAB}=\widehat{DCA}\\\widehat{CAD}=\widehat{ACB}\end{matrix}\right.\left(các.cặp.góc.tương.ứng\right)\)
Mà các cặp góc này ở vị trí so le trong nên \(AB//CD;AD//BC\)
Bài 5:
a) Ta có: A+P=Q
nên A=Q-P
\(=2x^2+5xy-3y^2-6x^2+7xy-4y^2\)
\(=-4x^2+12xy-7y^2\)
b) Ta có: B-Q=P
nên B=P+Q
\(=6x^2-7xy+4y^2+2x^2+5xy-3y^2\)
\(=8x^2-2xy+y^2\)
Bài 6:
a) \(P\left(-\dfrac{1}{2}\right)=4\cdot\left(-\dfrac{1}{2}\right)^2-9\cdot\dfrac{-1}{2}=4\cdot\dfrac{1}{4}+\dfrac{9}{2}=1+\dfrac{9}{2}=\dfrac{11}{2}\)
\(Q\left(\dfrac{2}{3}\right)=3\cdot\dfrac{2}{3}+6=2+6=8\)
b) Đặt P(x)=0
\(\Leftrightarrow x\left(4x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{9}{4}\end{matrix}\right.\)
Đặt Q(x)=0
\(\Leftrightarrow3x+6=0\)
hay x=-2
B5:
a)ta có :A+P=Q suy ra A=Q-P
A=-4x^2+12xy-y^2
b)ta có :B-Q=P suy ra A=Q+P
B=8x^2-2xy+y^2