Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài IV:
1: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
2: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔMAO vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(3\right)\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD tại C
=>AC\(\perp\)DM tại C
Xét ΔADM vuông tại A có AC là đường cao
nên \(MC\cdot MD=MA^2\left(4\right)\)
Từ (3) và (4) suy ra \(MA^2=MH\cdot MO=MC\cdot MD\)
3: Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)
\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)
mà \(\widehat{OAI}=\widehat{OIA}\)
nên \(\widehat{MAI}=\widehat{HAI}\)
=>AI là phân giác của góc HAM
Xét ΔAHM có AI là phân giác
nên \(\dfrac{HI}{IM}=\dfrac{AH}{AM}\left(5\right)\)
Xét ΔOHA vuông tại H và ΔOAM vuông tại A có
\(\widehat{HOA}\) chung
Do đó: ΔOHA đồng dạng với ΔOAM
=>\(\dfrac{OH}{OA}=\dfrac{HA}{AM}\)
=>\(\dfrac{OH}{OI}=\dfrac{AH}{AM}\left(6\right)\)
Từ (5) và (6) suy ra \(\dfrac{OH}{OI}=\dfrac{IH}{IM}\)
=>\(HO\cdot IM=IO\cdot IH\)
Bài 7:
a: \(A=x+\sqrt{x}\ge0\forall x\)
Dấu '=' xảy ra khi x=0
bài 9:
Kẻ OI vuông góc KH
=>OI là khoảng cách từ O đến KH
ΔOIM vuông tại I
=>OI<OM
Xét (O) có
OI,OM lần lượt là khoảng cách từ O đến KH,AB
KH,AB là các dây cung của (O)
OI<OM
Do đó: KH>AB
Bài III:
a:
b: Phương trình hoành độ giao điểm là:
\(2x-3=-\dfrac{1}{2}x+1\)
=>\(2x+\dfrac{1}{2}x=3+1\)
=>\(\dfrac{5}{2}x=4\)
=>\(x=4:\dfrac{5}{2}=4\cdot\dfrac{2}{5}=\dfrac{8}{5}\)
Khi x=8/5 thì \(y=2x-3=2\cdot\dfrac{8}{5}-3=\dfrac{16}{5}-3=\dfrac{1}{5}\)
Vậy: tọa độ giao điểm của (d) và (d') là \(B\left(\dfrac{8}{5};\dfrac{1}{5}\right)\)
c: Vì (m)//(d) nên \(\left\{{}\begin{matrix}a=2\\b< >-3\end{matrix}\right.\)
Vậy: (m): \(y=2x+b\)
Thay x=-2 và y=2 vào (m), ta được:
\(b+2\cdot\left(-2\right)=2\)
=>b-4=2
=>b=6
Vậy: (m): y=2x+6
\(\left\{{}\begin{matrix}-5x+3y=22\\3x+2y=22\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-15x+9y=66\\15x+10y=110\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-y=-44\\3x+2y=22\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=44\\3x=22-2y=22-2\cdot44=22-88=-66\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-22\\y=44\end{matrix}\right.\)
a: Ta có: EC//AB
AB⊥CD
Do đó: EC⊥CD
=>ΔCED nội tiếp đường tròn đường kính CD
=>O là trung điểm của CD(Vì C,E,D cùng nằm trên đường tròn O)
=>E,O,D thẳng hàng
b: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
DO đó: ΔAEB vuông tại E
Xét tứ giác AEBD có
O là trung điểm của AB
O là trung điểm của ED
Do đó: AEBD là hình bình hành
mà \(\widehat{AEB}=90^0\)
nên AEBD là hình chữ nhật
Bài 4:
a. Khi $m=2$ thì hàm số là: $y=x+2$.
Cho $x=0$ thì $y=x+2=0+2=2$. Ta có điểm $(0,2)$
Cho $x=1$ thì $y=1+2=3$. Ta có điểm $(1,3)$
Nối $(0,2)$ với $(1,3)$ ta được đths $y=x+2$
b.
Để hàm đồng biến thì $m^2-3>0$
$\Leftrightarrow m> \sqrt{3}$ hoặc $m< -\sqrt{3}$
Để hàm nghịch biến thì $m^2-3<0$
$\Leftrightarrow -\sqrt{3}< m< \sqrt{3}$
c.
Để $(d)$ đi qua $A(1;2)$ thì:
$y_A=(m^2-3)x_A+2$
$\Leftrightarrow 2=(m^2-3).1+2=m^2-1$
$\Leftrightarrow m^2=3\Leftrightarrow m=\pm \sqrt{3}$
d. Để $(d)$ đi qua $B(1;8)$ thì:
$y_B=(m^2-3)x_B+2$
$\Leftrightarrow 8=(m^2-3).1+2=m^2-1$
$\Leftrightarrow m^2=9\Leftrightarrow m=\pm 3$
Bài 6:
$M$ nằm trên đường thẳng $2x+y=3$ nên:
$2x_M+y_M=3$
Mà $x_M=\frac{1}{2}$ nên $y_M=3-2x_M=3-2.\frac{1}{2}=2$
Vậy $M(\frac{1}{2};2)$
Gọi PTĐT $(d)$ là $y=ax+b$
$A(-2;1)\in (d)$ nên: $y_A=ax_A+b$
$\Rightarrow 1=-2a+b(1)$
$M(\frac{1}{2};2)\in (d)$ nên:
$y_M=ax_M+b$
$\Rightarrow 2=\frac{1}{2}a+b(2)$
Từ $(1); (2)\Rightarrow a=\frac{2}{5}; b=\frac{9}{5}$
$\Rightarrow (d): y=\frac{2}{5}x+\frac{9}{5}$