Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=6 = 1+2+3 <=> (x-1) +(y-2) +(z-3) = 0
mũ 3 lên ra pt cần CM
Đặt: x - 1 = a; y - 2 = b; c - 3 = z
=> a + b + c = 0
=> a + b = - c
=> (a + b)3 = - c3
a3 + b3 + c3
= a3 + b3 - (a + b)3
= a3 + b3 - a3 - 3ab(a + b) - b3
= - 3ab(a + b) = - 3ab(-c) = 3abc
Thay trở lại đc:
\(\left(x-1\right)^3+\left(y-2\right)^3+\left(z-3\right)^3=3\left(x-1\right)\left(y-2\right)\left(z-3\right)\)
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
ai giúp với đi nào khó quá
\(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)
\(=\left(x+y\right)^3+z^3+3\left(x+y\right)\left(xz+yz+z^2\right)\)
\(=\left(x+y\right)^3+z^3+3\left(x+y\right)\left(x+y+z\right)z\)