Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Ta có: \(IA=IB=\dfrac{AB}{2}\)
\(DK=KC=\dfrac{DC}{2}\)
mà AB=DC
nên IA=IB=DK=KC
Xét tứ giác IBKD có
IB//DK
IB=DK
Do đó: IBKD là hình bình hành
b: Xét tứ giác AIKD có
AI//DK
AI=DK
Do đó: AIKD là hình bình hành
Suy ra: Hai đường chéo AK và DI cắt nhau tại trung điểm của mỗi đường
mà AK cắt DI tại E
nên E là trung điểm của DI
Suy ra: \(EI=\dfrac{DI}{2}\left(1\right)\)
Xét tứ giác BIKC có
BI//KC
BI=KC
Do đó: BIKC là hình bình hành
Suy ra: Hai đường chéo IC và BK cắt nhau tại trung điểm của mỗi đường
mà IC cắt BK tại F
nên F là trung điểm của BK
\(\Leftrightarrow KF=\dfrac{BK}{2}\left(2\right)\)
Ta có: IBKD là hình bình hành
nên \(ID=BK\left(3\right)\) và ID=BK
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra EI//KF và EI=KF
Xét tứ giác IEKF có
IE//KF
IE=KF
Do đó: IEKF là hình bình hành
Bài 4:
c: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
Suy ra: Hai đường chéo AC và IK cắt nhau tại trung điểm của mỗi đường\(\left(4\right)\)
Ta có: EIFK là hình bình hành
nên hai đường chéo EF và IK cắt nhau tại trung điểm của mỗi đường\(\left(5\right)\)
Từ \(\left(4\right),\left(5\right)\) suy ra AC,EF,IK đồng quy
Bài III:
a:
b: Phương trình hoành độ giao điểm là:
\(2x-3=-\dfrac{1}{2}x+1\)
=>\(2x+\dfrac{1}{2}x=3+1\)
=>\(\dfrac{5}{2}x=4\)
=>\(x=4:\dfrac{5}{2}=4\cdot\dfrac{2}{5}=\dfrac{8}{5}\)
Khi x=8/5 thì \(y=2x-3=2\cdot\dfrac{8}{5}-3=\dfrac{16}{5}-3=\dfrac{1}{5}\)
Vậy: tọa độ giao điểm của (d) và (d') là \(B\left(\dfrac{8}{5};\dfrac{1}{5}\right)\)
c: Vì (m)//(d) nên \(\left\{{}\begin{matrix}a=2\\b< >-3\end{matrix}\right.\)
Vậy: (m): \(y=2x+b\)
Thay x=-2 và y=2 vào (m), ta được:
\(b+2\cdot\left(-2\right)=2\)
=>b-4=2
=>b=6
Vậy: (m): y=2x+6
\(3,\\ a,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=12\\ \Leftrightarrow\sqrt{x+5}=4\Leftrightarrow x+5=16\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-5\right|=6\Leftrightarrow\left[{}\begin{matrix}x-5=6\\5-x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
3: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB=12.5\left(cm\right)\)
\(\Leftrightarrow AC=12.5\sqrt{3}\left(cm\right)\)