K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)

\(\Leftrightarrow\left[2\left(2x^2-6x+5\right)\right].\left(2x-3\right)^2=2.1\)

\(\Leftrightarrow\left(4x^2-12x+10\right)\left(2x-3\right)^2=2\)

\(\Leftrightarrow\left[\left(2x\right)^2-2.2x.3+3^2+1\right]\left(2x-3\right)^2=2\)

\(\Leftrightarrow\left[\left(2x-3\right)^2+1\right]\left(2x-3\right)^2=2\) (1)

Đặt \(\left(2x-3\right)^2=c\left(c\ge0\right)\)

Suy ra (1) trở thành: \(c\left(c+1\right)=2\)

                      \(\Leftrightarrow\left(c-1\right)\left(c+2\right)=0\)

                        \(\Leftrightarrow\orbr{\begin{cases}c-1=0\\c+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}c=1\\c=-2\end{cases}}}\)

Vì \(c\ge1\) nên c = 1

Hay \(\Rightarrow\left(2x-3\right)^2=1\)

        \(\Rightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)

Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2

P/s: Bài giải có nhiều sai sót, chị xem lại giúp em.

31 tháng 12 2018

P/s: Chữ (h) nghĩa là "hoặc"

\(\left(2x^2-6x+5\right)\left(2x-3\right)^2=1\)

Do 1 là số dương nên \(\left(2x^2-6x+5\right)\) và \(\left(2x-3\right)^2\) đồng dấu.

Mà \(\left(2x-3\right)^2\ge0\forall x\) nên chỉ cần xét 1 trường hợp:

 \(\hept{\begin{cases}2x^2-6x+5=1\\\left(2x-3\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x^2-6x+4=0\\2x-3=1..\left(h\right)..2x-3=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\left(x-2\right)\left(x-1\right)=0\\2x=4...\left(h\right)...2x=2\end{cases}}\Leftrightarrow x=2...\left(h\right)...x=1\)

Vậy x = 2 hoặc x = 1

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8

4 tháng 8 2019

a)  x=8 hoặc x=-1

Đặt ẩn phụ

g)  x=1 hoặc x=2 hoặc x=-3

Phân tích thành nhân tử rồi xét giá trị

4 tháng 8 2019

e) 

\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1

<=>\(2x+1-3x=\left(x+1\right)^2\)

<=>\(2x+1-3x=x^2-2x+1\)

<=> \(2x-3x-x^2+2x=1-1\)

<=> \(x-x^2=0\)

<=> \(x\left(1-x\right)=0\)

<=> \(x=0\)Hoặc \(1-x=0\)

trg hợp 1 : \(x=0\)

th2: \(1-x=0\)<=>\(x=1\)

4 tháng 8 2019

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)

Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)

\(a+b+ab=3\)

và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)

Cộng hai vế xuống ta có :

\(a^2+b^2=x+1+8-x=9\)

Theo phương trình ta lại có :

\(a+b+ab=3\)

Ta có hệ phương trình :

\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)

Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi 

8 tháng 1 2021

1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)

=> Hệ có vô số nghiệm.

3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)