Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)
Cách 1: \(x^2+y^2\ge2xy\)
\(2x^2+2z^2\ge4xz\)
\(2y^2+2z^2\ge4yz\)
Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)
Cách 2:
Xét \(S-2\left[xy+2yz+2zx\right]\)
\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)
Do đó...
\(x+y+z=6\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)
Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)
Vậy \(x=y=z=2\)
Chúc bạn học tốt ~
ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)
Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
Thay \(x+y+z=6\) và ta có:
\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)
Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)
Từ (*) suy ra x=y=z=2
\(x^2-4x+y^2-6y+15=2\)
\(\Rightarrow x^2-4x+4+y^2-6y+9+2=2\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x^2-4x+y^2-6y+15=0
x^2-4x+4+y^2-6y+9+2=2
(x-2)^2+(y-3)^2=0
do x-2)^2>=o, (y-3)^2>= 0( ghi chú : >= là lớn hơn hoặc bằng)
vậy x-2=0 và y-3=0
x=2 và y=3
vậy x=2 và y=3 là nghiệm phương trình
Ta có: \(x^2+y^2+z^2+t^2-\left(xy+yz+zt+tx\right)=1-1\)
\(\Leftrightarrow2\left(x^2+y^2+z^2+t^2-xy-yz-zt-tx\right)=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2+2t^2-2xy-2yz-2zt-tx=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zt+t^2\right)+\left(t^2-2tx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-t\right)^2+\left(t-x\right)^2=0\)
Vì \(\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0;\left(z-t\right)^2\ge0;\left(t-x\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-t\right)^2+\left(t-x\right)^2\ge0\)
Dấu "=" xảy ra khi x - y = 0 ; y - z = 0 ; z - t = 0 ; t - x = 0 <=> x = y = z = t
Khi đó \(x^2+y^2+z^2+t^2=x^2+x^2+x^2+x^2=4x^2=1\)
\(\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)
Vậy \(x=y=z=t=\pm\frac{1}{2}\)
TL
x=2
HT