Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4xy3-2=2(2xy3-1)
b) 5xy3+2xy+4x2y2=xy(5y2+2+4xy)
d) 5x(x-y)-2y(y-x)=(5x+2y)(x-y)
e) x3-6x2+12x-8=(x-2)3
f) (x+1)(x+2)(x+3)(x+4)-3=\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-3\)=\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3\)
Đặt x2+5x+5=y
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3\)
= (y-1)(y+1)-3
=y2-1-3
=y2-4
=(y-2)(y+2)
= (x2+5x+5-2)(x2+5x+5+2)
= (x2+5x+3)(x2+5x+7)
h) 6x2-7x+1=(6x2-6x)-(x-1)=6x(x-1)-(x-1)=(6x-1)(x-1)
Bài 3:
a) \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
c) \(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
Bài 1:
a) \(\left(x^2-x+1\right)\left(x^2-x+2\right)-12\)
\(=\left(x^2-x\right)^2+3\left(x^2-x\right)+2-12\)
\(=\left(x^2-x\right)^2+5\left(x^2-x\right)-2\left(x^2-x\right)-10\)
\(=\left(x^2-x\right)\left(x^2-x+5\right)-2\left(x^2-x+5\right)\)
\(=\left(x^2-x+5\right)\left(x^2-x-2\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x^2-x+5\right)\)
b) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)\)
c) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-4\right)\left(x-2\right)\)
Câu 1: Chọn C.
Câu 2: Chọn D.
Câu 3: Chọn A.
Câu 4: Chọn A.
Câu 5: Chọn D (x=13/2).
Câu 6: Chọn A.
Câu 7: Chọn B.
Câu 8: Chọn D.
Câu 9: Chọn a.
Câu 10: Chọn d.
a) Ta có: 3a+1<3b+1
\(\Leftrightarrow3a< 3b\)
hay a<b
Bài 5:
a: Ta có: \(x^2-8x+17\)
\(=x^2-8x+16+1\)
\(=\left(x-4\right)^2+1>0\forall x\)
b: Ta có: \(4x^2-12x+13\)
\(=4x^2-12x+9+4\)
\(=\left(2x-3\right)^2+4>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
bạn đăng nhỏ câu hỏi ra
chỉ cần lm 2 bài cuối thôi ạ