K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

20 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)

\(=\frac{9+31}{40}=\frac{40}{40}=1\)

Cứ thế là tìm x+1 rồi tìm x

                    y+3           y

                    x+5           z

    

3 tháng 2 2020

mai bn pai đi hok a

3 tháng 2 2020

lê phạm anh thư Học thêm nha...

26 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)

\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=\frac{-62}{31}=-2\)

\(\Rightarrow x=\left(-2\right).6=-12\)

\(y=\left(-2\right).15=-30\)

\(z=\left(-2\right).10=-20\)

NM
14 tháng 8 2021

ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)

vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)

27 tháng 8 2017

khong biet

27 tháng 8 2017

x=4, y=6,z=8

24 tháng 3 2020

\(\Leftrightarrow\frac{4}{9}x^2=\frac{9}{16}y^2=\frac{25}{36}z^2\)

\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2\)

Áp dụng t/c dãy tỉ số bằng nhau ta được:\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2=\frac{900.\left(x^2+y^2+z^2\right)}{2025+1600+1296}=\frac{900.724}{4921}\)

=> x ~ 17,26; y ~ 15,34; z ~ 13,81.