Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left(-5a^2b^4c^6\right)^7-\left(9a^3bc^5\right)^8=0\)
\(\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}=0\)
Vì \(a^{14}b^{28}c^{42}\ge0\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}\le0\)
\(a^{24}b^8c^{40}\ge0\Rightarrow9^8a^{24}b^8c^{40}\ge0\)
\(\Rightarrow\left(-5\right)^7a^{14}b^{28}c^{42}-9^8a^{24}b^8c^{40}\le0\)
Mà VP=0
Dấu "=" xảy ra khi
\(\left(-5\right)^7a^{14}b^{28}c^{42}=0\) và \(9^8a^{24}b^8c^{40}=0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow A=a+b+c=0+0+0=0\)
Ta có:
(22x + 3y) - (12x - 7y) = 1 - (-9)
22x + 3y - 12x + 7y = 1+ 9
10x + 10y = 10
10 (x + y) = 10
x + y = 10 : 10 = 1
=> Trung bình cộng của x và y bằng 1 : 2 = 0.5
=1+\(\dfrac{1}{2}\).3+\(\dfrac{1}{3}\).6+\(\dfrac{1}{4}\).10+....+\(\dfrac{1}{16}\).136
= 1+\(\dfrac{3}{2}\)+2+\(\dfrac{5}{2}\)+..+\(\dfrac{17}{2}\)
=(1+2+...+8)+(\(\dfrac{3}{2}\)+\(\dfrac{5}{2}\)+..+\(\dfrac{17}{2}\))
= 36+40=76
Để biểu thức P đạt giá trị lớn nhất thì mẫu phải đạt GTNN.
\(\Rightarrow5+x^2\) phải nhỏ nhất
\(\Rightarrow x^2\) phải nhỏ nhất
mà \(x^2\ge0\)
\(\Rightarrow x^2\) nhỏ nhất là bằng 0
\(\Rightarrow x=0\)
Vậy thì tick cho mik nhé!!!
Có:\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}\)
\(\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{x}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\Rightarrow\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
và \(x^2+y^2+z^2=\dfrac{217}{4}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{36+81+100}=\dfrac{217}{\dfrac{4}{217}}=\dfrac{217}{4.217}=0,25\)
\(\Rightarrow\left[{}\begin{matrix}x^2=9\\y^2=20,25\\z^2=25\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\y=4,5\\z=5\end{matrix}\right.\)
(mk chỉ lấy x,y,z t/m đề thoy)
\(\Rightarrow x+2y-2z=3+2\cdot4,5-2\cdot5=2\)
Vậy............................
Có: \(\dfrac{a}{3}=\dfrac{b}{5}\)
\(=\dfrac{3a}{3.3}=\dfrac{b}{5}\)
\(=\dfrac{3a}{9}=\dfrac{b}{5}=\dfrac{3a+b}{9+5}=\dfrac{2}{14}=\dfrac{1}{7}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{1}{7}\Rightarrow a=\dfrac{\left(1.3\right)}{7}=\dfrac{3}{7}\)
Vậy số a thỏa mãn là \(\dfrac{3}{7}\)
Tick nha!!!
Có: \(\dfrac{a}{3}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a^3}{2^3}=\dfrac{b^3}{3^3}=\dfrac{c^3}{4^3}\)
\(=\dfrac{a^3}{8}=\dfrac{b^3}{27}=\dfrac{c^3}{64}\)
\(=\dfrac{a^3+b^3+c^3}{8+27+64}=\dfrac{792}{99}=8\)
\(\Rightarrow\dfrac{a^3}{8}=8\Rightarrow a^3=8.8=64\)
\(\Rightarrow a=4\)
\(\dfrac{b^3}{27}=8\Rightarrow b^3=8.27=216\)
\(\Rightarrow b=6\)
\(\dfrac{c^3}{64}=8\Rightarrow c^3=8.64=512\)
\(\Rightarrow c=8\)
Vậy giá trị của biểu thức \(H=\left|a+b-c\right|=\left|4+6-8\right|=\left|2\right|=2\)
Tick mik nha!!!
Bài 1:
a) Dấu hiệu: Điểm kiểm tra môn toán của 40 học sinh lớp 7A
số các giá trị: 40
b) số trung bình cộng: (4.2+5.7+6.7+7.7+8.8+9.6+10.3)/40=7,05
M0= 8