K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2022

câu a ) đường thẳng đi qua điểm A) thay x=3 , y= -4  , vào pt rồi tìm đenta, điểm B thì x=-4   , y=3   tìm đenta

câu b) chứng minh pt có 2 nghiệm phân biệt đenta >= 0

theo định lý vi ét  x1+x2=

                             x1.x2=

theo đề bài ta có thay vô

 

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+15^2=325\)

hay \(BC=5\sqrt{13}\left(cm\right)\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{15}{5\sqrt{13}}=\dfrac{3}{\sqrt{13}}\)

\(\Leftrightarrow\widehat{B}\simeq56^0\)

b: Xét ΔBAC có 

BI là đường phân giác ứng với cạnh AC

nên \(\dfrac{AI}{AB}=\dfrac{CI}{BC}\)

hay \(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}\)

mà AI+CI=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}=\dfrac{AI+CI}{10+5\sqrt{13}}=\dfrac{15}{10+5\sqrt{13}}=\dfrac{-2+\sqrt{13}}{3}\)

Do đó: \(AI=\dfrac{-20+10\sqrt{13}}{3}\left(cm\right)\)

27 tháng 8 2021

em em cảm cảm ơn anh nhiều lắm ạ

 

Bài 2: 

Áp dụng định lí Pytago vào ΔEFG vuông tại E, ta được:

\(FG^2=EF^2+EG^2\)

\(\Leftrightarrow FG^2=15^2+5^2=250\)

hay \(FG=5\sqrt{10}\left(cm\right)\)

22 tháng 5 2021

`x^2-2x-sqrt3+1=0`
Vì `Delta=1+sqrt3-1>0`
`=>` pt có 2 nghiệm pb
ÁP dụng vi-ét:
`x_1+x_2=2,x_1.x_2=1-sqrt3`
`M=x_1^2x_2^2-2x_1.x_2-x_1-x_2`
`=(x_1.x_2)^2-2(x_1.x_2)-(x_1+x_2)`
`=(sqrt3-1)^2-2(1-sqrt3)-2`
`=4-2sqrt3-2+2sqrt3-2`
`=0`

7 tháng 7 2021

1,\(\sqrt{\left(x-1\right)^2}=\left|x-1\right|=-\left(x-1\right)=1-x\)

2,\(\sqrt{\left(a-2b\right)^2}=\left|a-2b\right|=-\left(a-2b\right)=2b-a\)

3,\(\sqrt{\left(2x-1\right)^2}=\left|2x-1\right|=2x-1\)

23 tháng 9 2021

Xét tam giác ABH vuông tại H có:

\(sinB=\dfrac{AH}{AB}=0,5\Rightarrow AB=\dfrac{AH}{0,5}=\dfrac{5}{0,5}=10\)

Xét tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\left(Pytago\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{10^2-5^2}=5\sqrt{3}\)

4 tháng 10 2021

Bài 1 í

 

Bài 2: 

a: Ta có: \(\sqrt{2x-4}=2\)

\(\Leftrightarrow2x-4=4\)

hay x=4

b: Ta có: \(\sqrt{5x}=5\)

nên 5x=25

hay x=5

c: Ta có: \(\sqrt{2x^2+1}=x-1\)

\(\Leftrightarrow2x^2+1=x^2-2x+1\)

hay x=0(loại)

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6^2}{10}=3.6\left(cm\right)\\y=10-3.6=6.4\left(cm\right)\end{matrix}\right.\)