K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

A = ( 4x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

B = ( y - 5/2 )2 + 7/4 ≥ 7/4 > 0 ∀ x ( đpcm )

C = 2( x - 1/2 )2 + 3/2 ≥ 3/2 > 0 ∀ x ( đpcm )

D = ( 3x - 1 )2 + ( 5y + 1 )2 + 2 ≥ 2 > 0 ∀ x, y ( đpcm )

24 tháng 8 2021

Trả lời:

a, \(A=16x^2+8x+3=\left(16x^2+8x+1\right)+2=\left(4x+1\right)^2+2\ge2>0\forall x\) 

Dấu "=" xảy ra khi x = - 1/4

Vậy bt A luôn dương với mọi x.

b, \(B=y^2-5y+8=x^2-2.y.\frac{5}{2}+\frac{25}{4}+\frac{7}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall y\)

Dấu "=" xảy ra khi x = 5/2

Vậy bt B luôn dương với mọi y.

c, 

\(C=2x^2-2x+2=2\left(x^2-x+1\right)=2\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)\)

\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}>0\forall x\)

Dấu "=" xảy ra khi x = 1/2

Vậy bt C luôn dương với mọi x.

d, \(D=9x^2-6x+25y^2+10y+4\)

\(=9x^2-6x+25y^2+10y+1+1+2\)

\(=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\)

\(=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2>0\forall x;y\)

Dấu "=" xảy ra khi x = 1/3; y = - 1/5

Vậy bt D luôn dương với mọi x;y

7 tháng 6 2021

`((x-1)P)/(x+2)^2=Q/((x-2)(x+2))=T/((x+2)(x^2-2x+4))`

Nhân 2 vế với `x+2 ne 0` ta có:

`((x-1)P)/(x+2)=Q/(x-2)=T/(x^2-2x+4)`

Nhân cả tử và mẫu với `x-1 ne 0` ta có:

`((x-1)P)/(x+2)=((x-1)Q)/((x-1)(x-2))=((x-1)T)/((x-1)(x^2-2x+4))`

a: XétΔAHB vuông tại H và ΔAKC vuông tạiK có

góc A chung

=>ΔAHB đồng dạng với ΔAKC

b: góc BKC=góc BHC=90 độ

=>BKHC nội tiếp

=>góc AKH=góc ACB

mà góc A chung

nên ΔAKH đồng dạng với ΔACB

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
4 tháng 1 2017

Hòa tan hoàn toàn m gam một oxit sắt bằng hung dịch H2So4 đặc nóng thu a mol So2 duy nhất ,Mặt khác , sau khi khử hoàn toàn m gam oxit trên bằng CO ở nhiệt độ cao rồi cho toàn bộ lượng fe tạo thành vào h2so4 đặc nóng  dư thu 9 a mol so2 duy nhất ,Tìm công thức oxit sắt

5 tháng 7 2016

do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có

 \(\frac{x}{y}+\frac{y}{z}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

Cộng vế theo vế của 3 bất đẳng thức trên ta được

\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)

Cộng 3 vào 2 vế bất đẳng thức 

\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)

Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)

Xong !!!!

T I C K nha cảm ơn nhìu

CHÚC BẠN HỌC TỐT

22 tháng 4 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)

Dấu "=" xảy ra <=> x=y=z=1/3

NV
31 tháng 12 2021

\(\dfrac{x+3}{x-y}.\dfrac{x^2-y^2}{x^2-9}=\dfrac{x+3}{x-y}.\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+y}{x-3}\)