Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)
\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)
Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.
b)
ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)
PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)
\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)
\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)
Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất
e)
ĐKXĐ: \(x\geq \frac{5}{3}\)
PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)
\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)
\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)
\(\Leftrightarrow 4=(x+2)(2x-3)\)
\(\Leftrightarrow 2x^2+x-10=0\)
\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=2$
f) Bạn xem lại đề.
\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )
\(b.A>\dfrac{1}{3}\) ⇔ \(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)
⇔ \(3-\sqrt{x}>0\)
⇔ \(x< 9\)
Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?
\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)
⇒ \(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)
\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .
\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .
\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .
\(\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+1^2}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=|\sqrt{5}-1|=\sqrt{5}-1\)
a, \(\sqrt{x^2+2x-5}\)= \(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))
\(\Leftrightarrow x^2+2x-5=2x-1\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
#mã mã#
b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)
\(\Leftrightarrow x\left(x^3-3x+1\right)\)= \(x\left(x^3-1\right)\)
\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0
\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0
\(\Leftrightarrow\)x( 2-3x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)
vậy pt vô nghiệm
#mã mã#
Trục căn thức đi là ra thôi