K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

\(A\left(x\right)=4x^3-4x^2+x+10\)

\(B\left(x\right)=8x^3-x^2-4x+1\)

\(C\left(x\right)=-7x^3+10x^2-3x+16\)

a: Xét ΔKMB vuông tại B và ΔKNA vuông tại A có

KM=KN

góc K chung

DO đó: ΔKMB=ΔKNA

b: Ta có: ΔKMB=ΔKNA

nên MB=NA

c: Xét ΔANM vuông tại A và ΔBMN vuông tại B có

MN chung

AN=BM

Do đó: ΔANM=ΔBMN

a: Xét ΔADB và ΔADC có

AD chung

DB=DC

AB=AC
Do đó: ΔADB=ΔADC
b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là phân giác

c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

Suy ra: DE=DF

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

1:

a: AB=căn 25^2-20^2=15cm

b: HC^2-HB^2

=AC^2-AH^2-(AB^2-AH^2)

=AC^2-AB^2

18 tháng 4 2017

x , y có phải là số tự nhiên ko

18 tháng 4 2017

X,y nguyên nhé bạn

30 tháng 10 2016

Bài 2:

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+...+a_{0216}}{a_2+a_3+...+a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2017}\)

29 tháng 10 2016

chờ tí nhé, giải hơi lâu đấy -_-