Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko đăng linh tinh nha bạn
còn cách gì đó lên mạng mà tìm
K = a² - 2ab + 5b² - 4b + 9
= (a² - 2ab + b²) + (4b² - 4b + 1) + 8
= (a - b)² + (2b - 1)² + 8
Do (a - b)² ≥ 0 với mọi a, b ∈ R
(2b - 1)² ≥ 0 với mọi b R
⇒ (a - b)² + (2b - 1)² ≥ 0 với mọi a, b ∈ R
⇒ (a - b)² + (2b - 1)² + 8 ≥ 8 với mọi a, b ∈ R
Vậy GTNN của K là 8 khi a = b = 1/2
Bài 7:
a: ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)
\(\dfrac{x+5}{2x-1}-\dfrac{1-2x}{x+5}-2=0\)
=>\(\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)
=>\(\dfrac{\left(x+5\right)^2+\left(2x-1\right)^2}{\left(2x-1\right)\left(x+5\right)}=2\)
=>\(\left(x+5\right)^2+\left(2x-1\right)^2=2\left(2x-1\right)\left(x+5\right)\)
=>\(x^2+10x+25+4x^2-4x+1=2\left(2x^2+10x-x-5\right)\)
=>\(5x^2+6x+26-4x^2-18x+10=0\)
=>\(x^2-12x+36=0\)
=>\(\left(x-6\right)^2=0\)
=>x-6=0
=>x=6(nhận)
b: ĐKXĐ: \(x\notin\left\{3;-2;4\right\}\)
\(1-\dfrac{8}{x-4}=\dfrac{5}{3-x}-\dfrac{8-x}{x+2}\)
=>\(\dfrac{x-4-8}{x-4}=\dfrac{-5}{x-3}+\dfrac{x-8}{x+2}\)
=>\(\dfrac{x-12}{x-4}=\dfrac{-5\left(x+2\right)+\left(x-8\right)\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}\)
=>\(\dfrac{x-12}{x-4}=\dfrac{-5x-10+x^2-11x+24}{\left(x-3\right)\left(x+2\right)}\)
=>\(\left(x-12\right)\left(x^2-x-6\right)=\left(x-4\right)\left(x^2-16x+14\right)\)
=>\(x^3-x^2-6x-12x^2+12x+72=x^3-16x^2+14x-4x^2+64x-56\)
=>\(-13x^2+6x+72=-20x^2+78x-56\)
=>\(7x^2-72x+128=0\)
=>\(\left[{}\begin{matrix}x=8\left(nhận\right)\\x=\dfrac{16}{7}\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{x^2-4}\)
=>\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
=>\(\dfrac{\left(x-1\right)\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
=>\(x^2-3x+2+2x+4=12\)
=>\(x^2-x-6=0\)
=>(x-3)(x+2)=0
=>\(\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Bài làm:
Δ ABC vuông tại A?
Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)
=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)
=> \(AB=4k\)
Từ đây ta có thể dễ dàng tính được:
\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)
\(sin^2b+cos^2b=1\)
\(\left(\frac{3}{5}\right)^2+cos^2b=1\)
\(\frac{9}{25}+cos^2b=1\)
\(cos^2b=\frac{16}{25}\)
\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)
\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)
\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)
vì 1 phần mấy mà chả lớn hơn 0 9 / a+b+c =9a:2 b:2 c::2 nên a và b lớn hơn o k mình nha hứa rùi đó thực hiện 10 lần nhé
xin lỗi nhưng em không biết,bởi vì em mới học lớp 6 thôi nên không biết gì cả.Nếu em bằng tuổi anh chị thì em đã giúp rồi nhưng em chưa học đến nên không biết.Thông cảm cho em.T T
Tokoyami bn đăng từng câu 1 thôi. Nhiều thế này thì ko đủ kiên nhẫn để làm đâu
bạn này đang đau khổ
OoO_Nhok_Lạnh_Lùng_OoOhttps://olm.vn/thanhvien/hatho17 cái đứa này hack nik tớ\(A=2\sin^2\alpha+5\left(1-\sin^2\alpha\right)=5-3\sin^2\alpha=5-3\left(\frac{2}{3}\right)^2\)=\(\frac{11}{3}\)
bài này dùng hình vẽ để tính các cạnh tam giác vuoog đc ko nhỉ ?
\(1,A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\left(x>0;x\ne1;x\right)\\ A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)
\(2,x=2\sqrt{2}+3=\left(\sqrt{2}+1\right)^2\\ \Leftrightarrow A=\dfrac{2\sqrt{2}+3}{\sqrt{2}+1}=\dfrac{\left(2\sqrt{2}+3\right)\left(\sqrt{2}-1\right)}{1}\\ =4\sqrt{2}-2\sqrt{2}+3\sqrt{2}-3=5\sqrt{2}-3\)