K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ko đc đăng linh tinh nha bạn

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

II. Cách nhận biết câu trả lời đúng

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

10 tháng 3 2017

A B C M E F 18 24 H

Kẻ MH _I_ AB tại H

M là trung điểm của BC (MB = MC)

=> MB = \(\dfrac{1}{2}BC\) = \(\dfrac{24}{2}\) = 12 (đvđd)

Xét tam giác ABC vuông tại A và tam giác MBE vuông tại M có \(\widehat{B}\) chung

=> Tam giác ABC ~ Tam giác MBE (g - g)

=> \(\dfrac{AB}{MB}=\dfrac{BC}{BE}\)

=> \(\dfrac{AB}{12}=\dfrac{24}{18}\)

=> AB = 16 (đvđd)

MH // AC (MH _I_ AB và AC _I_ AB)

M là trung điểm của BC

=> H là trung điểm của AB

=> MH là đường trung bình của tam giác ABC

=> MH = \(\dfrac{1}{2}\)AC

Ta có: \(\dfrac{S_{ABM}}{S_{CBE}}=\dfrac{\dfrac{1}{2}\times AB\times HM}{\dfrac{1}{2}\times BE\times AC}=\dfrac{16\times\dfrac{1}{2}AC}{18\times AC}=\dfrac{4}{9}\)

20 tháng 10 2019

a) chứng minh abcd là hình thoi

ta có:ΔABC cân tại A(gt)

mà AM là đường trung tuyến của ΔABC(gt)

nên AM cũng là đường cao của ΔABC

=> AM⊥BC

xét tứ giác ABCD có AM⊥BC(cmt)

nên abcd là hình thoi(dấu hiệu nhận biết hình thoi)

b)

Xét ΔADE có:

M là trung điểm của AD (D đối xứng với A qua M (gt))

K là trung điểm của DE (E đối xứng với D qua K (gt))

MK là đường trung bình của ΔADE(đ/n đường trung bình của tam giác)

⇒MK // AE và MK=\(\frac{1}{2}AE\) (định lý 2 về đường trung bình của tam giác)

mà MK=\(\frac{1}{2}MC\)\(K\in MC\) (GT)

nên MC// AE và MC=AE

Xét tứ giác AEMC có MC// AE(cmt) và MC=AE(cmt)

nên AEMC là hình bình hình(dấu hiệu nhận biết hình bình hành)

mà ∠AMC=90 độ(AM⊥BC)

nên AMCE là hcn(đpcm)

c)

MC // AE ⇒⇒ BM // AE

MC = AE mà MC = BM ⇒⇒BM = AE

Xét tứ giác ABME có:

BM // AE (cmt)

BM = AE (cmt)

⇒⇒Tứ giác ABME là hình bình hành (dhnb)

mà AM giao BE tại I (gt)

⇒⇒I là trung điểm BE (t/c)

d) Gọi F là giao điểm của AC và ME

Vì AMCE là hình chữ nhật (dhnb)

⇒⇒MF=12ACMF=12AC

hay MF là đường trung tuyến

Xét ΔAMCΔAMC có:

MF; AK; CI là đường trung tuyến

⇒⇒ME; AK; CI đồng qui

d: Xét ΔFAC có

AE,CH là đường cao

AE cắt CH tại D

=>D là trực tâm

=>FD vuông góc AC

Xét ΔAHD và ΔAEF có

góc HAD chung

góc AHD=góc AEF

=>ΔAHD đồng dạng với ΔAEF

=>AD/AF=AH/AE

=>AD*AE=AH*AF

FD vuông góc AC

AB vuông góc AC

=>FD//AB

=>góc FDH=góc ABH

Xét ΔFHD và ΔAHB có

góc EHD=góc AHB

góc FDH=góc ABH

=>ΔFHD đồng dạng với ΔAHB

=>FD=AB và FH=AH

FD//AB

FD=AB

=>ABFD là hbh

=>BF=AD

AH=HF

=>AF=2*AH

=>AH=AF/2

AF*AH=AD*AE

=>AF*AF/2=BF*AE

=>AF^2=2*BF*AE

10 tháng 8 2017

mk nè bạn  ơi

10 tháng 8 2017

kb vs mk

2 tháng 11 2016

có sv tị nè chơi thì ib 

24 tháng 5 2017

mk kb roi do nha

24 tháng 5 2017

Kết bạn nha

29 tháng 9 2015

a) Tứ giác ABCD có AB = CD, AD = BC nên là hình bình hành.

Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành.

Do đó AI // CK

b) ∆DCN có DI = IC, IM // CN.

(vì AI // CK) nên suy ra DM = MN

Chứng minh tương tự đối với ∆ABM ta có MN = NB.

Vậy DM = MN = NB


 

25 tháng 6 2016

HC=9cm nha cac ban

25 tháng 6 2016

olm oi giup em vs