K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

LÊN YOUTUBE COI CÓ KO

12 tháng 6 2017

theo ý kiến của mk thì trên VMF cập nhật rất đầy đủ , 31,32 đề quá đủ dùng rồi 

25 tháng 9 2016

mk có nè

25 tháng 9 2016

mình ko có

25 tháng 4 2016

https://www.facebook.com/groups/2001.Toanhoc.Tuyensinh247/?ref=bookmarks

25 tháng 4 2016

https://www.facebook.com/groups/1536108143358493/?ref=bookmarks

17 tháng 1 2021

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

17 tháng 1 2021

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

12 tháng 6 2021

câu: 7: 

pt hoành độ giao điểm : \(x^2=3x+m< =>x^2-3x-m=0\)

\(\Delta=\left(-3\right)^2-4\left(-m\right)=9+4m\)

để (P) và(d) không có điểm chung\(< =>9+4m< 0< =>m< \dfrac{-9}{4}\)

Vậy ....

 

12 tháng 6 2021

Câu 6

Áp dụng hệ thức: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow\cos^2\alpha=1-0,6^2=0,64\)

\(\Rightarrow\cos\alpha=\pm0,8\)

Mà \(\alpha\) là góc nhọn nên \(\cos\alpha>0\) do đó \(\cos\alpha=0,8\)

Ta có: \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=0,75\)

Khi đó \(B=5\cos\alpha-4\tan\alpha=5.0,8-4.0,75=1\)

13 tháng 9 2018

Cái này phải mua bạn nhé, xem tại đây http://www.davibooks.vn/products/view/42824.Tai-Lieu-Chuyen-Toan-Trung-Hoc-Co-So-Toan-9-Tap-1-dai-So.html

13 tháng 9 2018

Mk chưa mua được nhưng cần gấp

có rồi nha bạn ko cần nhắc lại đâu tks nha

1 tháng 9 2018

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.