K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

Bài 3:

Đổi: 4 giờ 30 phút = 4,5 giờ

Tỉ số vận tốc 15km/h và vận tốc 12km/h là:

\(15:12=\frac{5}{4}\)

Trên cùng một quãng đường, vận tốc và thời gian là 2 đại lượng tỉ lệ nghịch

⇒ Tỉ số thời gian đi bằng \(\frac{4}{5}\) thời gian về

Coi thời gian đi là 4 phần bằng nhau thì thời gian về là 5 phần như thế

Vậy thời gian đi là:

4,5 : (4 + 5).4 = 2 (giờ)

Chiều dài quãng đường là:

15.2 = 30 (km)

Đáp số: 30 km

12 tháng 4 2020
https://i.imgur.com/qB3hkEF.jpg
6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

14 tháng 5 2021

16)

a) Tam giác ABC vuông tại A : \(AB^2+AC^2=BC^2\) 

BC=10 ⇒FC=10-5.2=4.8

b) Tam giác ABC và tam giác FEC có 

   C chung 

\(\dfrac{AC}{FC}=\dfrac{BC}{EC}=0.6\)

Do đó tam giác ABC đồng dạng với tam giác FEC (C-G-C)

c)⇒Góc  FEC=ABC=AEM

Tam giác MAE và tam giác MFB có

   Góc M chung 

Góc AEM = MBF (CMT)

⇒ 2 Tam giác đồng dạng (G-G)

\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)⇒ MA.MB=MF.MB

 

14 tháng 5 2021

a) Xét \(\Delta ABC\) vuông tại A có :

             \(AB^2+AC^2=BC^2\) (Định lí Py-ta-go)

=>        \(BC^2=6^2+8^2=100\) 

=>       BC = 10 (cm)

=>   CF = BC\(-\)BF = 10 - 5,2 = 4,8 (cm)

Vậy BC = 10 cm ; CF = 4,8 cm

b) Xét \(\Delta CAB\) và \(\Delta CFE\) có

 \(\left\{{}\begin{matrix}\widehat{C}:chung\\\dfrac{CF}{CE}=\dfrac{CA}{CB}\left(\dfrac{4,8}{6}=\dfrac{8}{10}=\dfrac{4}{5}\right)\end{matrix}\right.\)

=>\(\Delta CAB\sim\Delta CFE\) (c-g-c)

Vậy \(\Delta CAB\sim\Delta CFE\)

c) Xét \(\Delta MAEvà\Delta MFB\) có

\(\left\{{}\begin{matrix}\widehat{M}:chung\\\widehat{MAE}=\widehat{MFB}=90^0\end{matrix}\right.\)

=> \(\Delta MAE\sim\Delta MFB\)  (g-g)

=> \(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=> MA.MB = MF.ME

Vậy MA.MB = ME.MF

d) Xét \(\Delta BMF\) và \(\Delta BCA\) có

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFM}=\widehat{BAC}=90^0\end{matrix}\right.\) 

=> \(\Delta BMF\) \(\sim\)\(\Delta BCA\) (g-g)

=> \(\dfrac{MF}{AC}=\dfrac{BF}{BA}\) 

=> MF = \(\dfrac{8.5,2}{6}\) = \(\dfrac{104}{15}\approx6,9\left(cm\right)\)

Vậy MF \(\approx6,9\left(cm\right)\) 

18 tháng 4 2020

Ôn tập cuối năm phần số học

29 tháng 12 2021

Câu 5: B

Câu 6: B

29 tháng 12 2021

Cậu giải đc bài 2 hoặc 3 phần tự luận ko ạ

Bài 8:

a) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà DB=EC(gt)

và AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AD=AE;AB=AC\right)\)

Do đó: DE//BC(Định lí Ta lét đảo)

c) Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Bài 7:

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có

AD=BC(ABCD là hình thang cân)

\(\widehat{B}=\widehat{C}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

\(\Leftrightarrow DE+EF=CF+FE\)

\(\Leftrightarrow DF=CE\)

b) Xét tứ giác ABFE có 

AE//BF(gt)

AE=BF(ΔAED=ΔBFC)

Do đó: ABFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB=EF(Hai cạnh đối)

30 tháng 8 2016

\(1023456^3=1023456.1023456.1023456=\)kết quả lớn lắm

30 tháng 8 2016

vay co cach nao tinh dc k

Mỗi giờ xe thứ hai đi nhanh hơn xe thứ nhất là : \(35-30=5\) ( km )

Có 7h30p - 6h = 1h30p là thời gian xe một xuất phát trước xe hai. Đổi 1h30p thành 1,5 giờ

Trong 1h30p xe thứ nhất đi được là : \(30\times1,5=45\left(km\right)\)

Từ trên ta có mỗi giờ khoảng cách giữa 2 xe giảm đi 5km

=> Số giờ sau 2 xe có thể gặp nhau : \(45\div5=9\left(h\right)\)

Đáp số :................

1 tháng 2 2023

\(a.A=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\left(1-\dfrac{x}{x+2}\right)\left(đk:x\ne\pm2\right)\)

\(=\left[\dfrac{x}{x^2-4}+\dfrac{x-2}{x^2-4}-\dfrac{2\left(x+2\right)}{x^2-4}\right]:\left(\dfrac{x+2}{x+2}-\dfrac{x}{x+2}\right)\)

\(=\dfrac{x+x-2-2x-4}{x^2-4}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}.\dfrac{x+2}{2}\)

\(=\dfrac{-3}{x-2}\left(1\right)\)

\(b.\) Thay x = 2023 vào (1), ta được:

\(\dfrac{-3}{2023-2}=-\dfrac{3}{2021}\)

\(c.\) Để A là một số nguyên thì \(x-2\inƯ_{\left(-3\right)}\)

Vậy x - 2 có các giá trị sau:

\(\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=5\\x=-1\end{matrix}\right.\)