Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk x khác 1 ; y khác -2
\(\left\{{}\begin{matrix}\dfrac{8}{x-1}+\dfrac{15}{y+2}=1\\\dfrac{1}{x-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x-1}+\dfrac{15}{y+2}=1\\\dfrac{8}{x-1}+\dfrac{8}{y+2}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y+2}=-7\\\dfrac{1}{x-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=-1\\\dfrac{1}{x-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\\dfrac{1}{x-1}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\1=2x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(x=\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{2}-1}=\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}=\sqrt{2}-1\)
\(B=\left(x^2+2x+2\right)^{2022}\)
\(=\left(3-2\sqrt{2}+2\sqrt{2}-2+2\right)^{2022}\)
\(=3^{2022}\)
`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`
`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`
`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}` `ĐK: x >= \sqrt{6}/6`
`<=>24x^2-8\sqrt{6}x+4=9x^2+36`
`<=>15x^2-8\sqrt{6}x-32=0`
`<=>x^2-[8\sqrt{6}]/15x-32/15=0`
`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`
`<=>|x-[4\sqrt{6}]/15|=8/5`
`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`
phương trình tọa độ giao điểm của (D1)và (D2) là :
-x+2=\(\dfrac{1}{2}x\) \(\Leftrightarrow-x-\dfrac{1}{2}x=-2\Leftrightarrow-\dfrac{3}{2}x=-2\Leftrightarrow x=\dfrac{4}{3}\)
\(\Rightarrow y=-x+2=-\dfrac{4}{3}+2=\dfrac{2}{3}\)
vậy tọa độ giao điểm (D1)và (D2) là A(\(\dfrac{4}{3};\dfrac{2}{3}\))
\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}\)
\(=\sqrt{3}\cdot\dfrac{1}{\sqrt{3}}\)
=1
a: Ta có: \(\sqrt{x+2}=3x-4\)
\(\Leftrightarrow9x^2-24x+16-x-2=0\)
\(\Leftrightarrow9x^2-25x+14=0\)
\(\text{Δ}=\left(-25\right)^2-4\cdot9\cdot14=121\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{25-11}{18}=\dfrac{7}{18}\left(loại\right)\\x_2=\dfrac{25+11}{18}=2\left(nhận\right)\end{matrix}\right.\)
d: góc CEB=góc CAB=90 độ
=>CEAB nội tiếp
góc EAC=góc EBC
góc ECA=góc EBA
mà góc EBC=góc EBA
nên góc EAC=góc ECA
=>EA=EC