Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
=>AD cắt EF tại trung điểm của mỗi đường
mà I là trung điểm của EF
nên I là trung điểm của AD
=>A,I,D thẳng hàng
b: Xét ΔBAC có DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)
Xét ΔBAC có DF//AB
nên \(\dfrac{DF}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{DE}{AC}+\dfrac{DF}{AB}=\dfrac{BD}{BC}+\dfrac{CD}{BC}=1\)
=>\(\dfrac{DE}{AB}+\dfrac{DF}{AB}=1\)
=>\(DE+DF=AB\)
=>\(2\cdot\left(DE+DF\right)=2AB\)
=>\(C_{AEDF}=2\cdot AB\) không đổi
Vì x,y,z>0 nên áp dung bất đẳng thức Cô-si ta có:
\(\dfrac{1}{x^2+2yz}\)+\(\dfrac{1}{y^2+2xz}\)+\(\dfrac{1}{z^2+2xy}\)≥\(\dfrac{\left(1+1+1\right)^3}{x^2+y^2+z^2+2xy+2yz+2xz}\)
mà x+y+z=1 ⇔ x2+y2+z2+2xy+2yz+2zx=1 (bình phương cả 2 vế)
nên \(\dfrac{1}{x^2+2yz}\)+\(\dfrac{1}{y^2+2xz}\)+\(\dfrac{1}{z^2+2xy}\)≥\(\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}\)=9