K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

::((

9 tháng 12 2018

xàm vậy

9 tháng 12 2018

hahhahahaha

Đặng Yến Ngọc hết cô đơn rồi nhé

chúc mừng,chúc mừng

15 tháng 10 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

=>AD cắt EF tại trung điểm của mỗi đường

mà I là trung điểm của EF

nên I là trung điểm của AD

=>A,I,D thẳng hàng

b: Xét ΔBAC có DE//AC

nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)

Xét ΔBAC có DF//AB

nên \(\dfrac{DF}{AB}=\dfrac{CD}{CB}\)

\(\dfrac{DE}{AC}+\dfrac{DF}{AB}=\dfrac{BD}{BC}+\dfrac{CD}{BC}=1\)

=>\(\dfrac{DE}{AB}+\dfrac{DF}{AB}=1\)

=>\(DE+DF=AB\)

=>\(2\cdot\left(DE+DF\right)=2AB\)

=>\(C_{AEDF}=2\cdot AB\) không đổi

28 tháng 12 2017

hình như ko có

9 tháng 12 2018

Ko có đâu bn ơi ok

17 tháng 5 2023

Vì x,y,z>0 nên áp dung bất đẳng thức Cô-si ta có:

\(\dfrac{1}{x^2+2yz}\)+\(\dfrac{1}{y^2+2xz}\)+\(\dfrac{1}{z^2+2xy}\)≥\(\dfrac{\left(1+1+1\right)^3}{x^2+y^2+z^2+2xy+2yz+2xz}\)

mà x+y+z=1 ⇔ x2+y2+z2+2xy+2yz+2zx=1 (bình phương cả 2 vế)

nên \(\dfrac{1}{x^2+2yz}\)+\(\dfrac{1}{y^2+2xz}\)+\(\dfrac{1}{z^2+2xy}\)≥\(\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}\)=9

16 tháng 11 2018

Are you 18 years old?

* Study well !

# Miu

16 tháng 11 2018

có k cho mình đi